THIRD EDITION

SEBORG • EDGAR • MELLICHAMP • DOYLE

Process Dynamics and Control

International Student Version

Contents

PART ONE INTRODUCTION TO PROCESS CONTROL

1.	Introduction	to Process	Control	1

- 1.1 Representative Process Control Problems 1
- 1.2 Illustrative Example—A Blending Process 3
- 1.3 Classification of Process Control Strategies 5
- 1.4 A More Complicated Example— A Distillation Column 7
- 1.5 The Hierarchy of Process Control Activities 8
- 1.6 An Overview of Control System Design 10

2. Theoretical Models of Chemical Processes 15

- 2.1 The Rationale for Dynamic Process Models 15
- 2.2 General Modeling Principles 17
- 2.3 Degrees of Freedom Analysis 21
- 2.4 Dynamic Models of Representative Processes 22
- 2.5 Process Dynamics and Mathematical Models 35

PART TWO DYNAMIC BEHAVIOR OF PROCESSES

3. Transfer Function Models 43

- 3.1 An Illustrative Example: A Continuous Blending System 43
- 3.2 Transfer Functions of Complicated Models 45
- 3.3 Properties of Transfer Functions 46
- 3.4 Linearization of Nonlinear Models 49

4. Dynamic Behavior of First-Order and Second-Order Processes 58

- 4.1 Standard Process Inputs 58
- 4.2 Response of First-Order Processes 61

- 4.3 Response of Integrating Processes 64
- 4.4 Response of Second-Order Processes 66

5. Dynamic Response Characteristics of More Complicated Processes 78

- 5.1 Poles and Zeros and Their Effect on Process Response 78
- 5.2 Processes with Time Delays 82
- 5.3 Approximation of Higher-Order Transfer Functions 86
- 5.4 Interacting and Noninteracting Processes 88
- 5.5 State-Space and Transfer Function Matrix Models 90
- 5.6 Multiple-Input, Multiple-Output (MIMO) Processes 93

6. Development of Empirical Models from Process Data 102

- 6.1 Model Development Using Linear or Nonlinear Regression 103
- 6.2 Fitting First- and Second-Order Models
 Using Step Tests 107
- 6.3 Neural Network Models 112
- 6.4 Development of Discrete-Time Dynamic Models 113
- 6.5 Identifying Discrete-Time Models from Experimental Data 115

PART THREE FEEDBACK AND FEEDFORWARD CONTROL

7. Feedback Controllers 124

- 7.1 Introduction 124
- 7.2 Basic Control Modes 126
- 7.3 Features of PID Controllers 131
- 7.4 On-Off Controllers 134
- 7.5 Typical Responses of Feedback Control Systems 134
- 7.6 Digital Versions of PID Controllers 135

8. Control System Instrumentation 141	13.3 Bode Diagrams 251
8.1 Sensors, Transmitters, and Transducers 142	13.4 Frequency Response Characteristics of
8.2 Final Control Elements 147	Feedback Controllers 255
8.3 Signal Transmission and Digital	13.5 Nyquist Diagrams 260 13.6 Bode Stability Criterion 260
Communication 153	13.7 Gain and Phase Margins 264
8.4 Accuracy in Instrumentation 154	15.7 Gain and I hase waigins 204
9. Process Safety and Process Control 160	14. Feedforward and Ratio Control 271
	14.1 Introduction to Feedforward
9.1 Layers of Protection 1619.2 Alarm Management 165	Control 271
9.3 Abnormal Event Detection 169	14.2 Ratio Control 273
9.4 Risk Assessment 171	14.3 Feedforward Controller Design Based on
7.1 Idok 1 1500 555.1011 27.2	Steady-State Models 275 14.4 Feedforward Controller Design Based on
10. Dynamic Behavior and Stability of	Dynamic Models 277
Closed-Loop Control Systems 176	14.5 The Relationship Between the Steady-State
10.1 Block Diagram Representation 176	and Dynamic Design Methods 281
10.2 Closed-Loop Transfer Functions 179	14.6 Configurations for Feedforward-Feedback
10.3 Closed-Loop Responses of Simple	Control 282
Control Systems 182	14.7 Tuning Feedforward Controllers 282
10.4 Stability of Closed-Loop Control	
Systems 188	PART FOUR
10.5 Root Locus Diagrams 194	ADVANCED PROCESS CONTROL
11. PID Controller Design, Tuning, and	15. Enhanced Single-Loop Control
Troubleshooting 204	Strategies 288
11.1 Performance Criteria for Closed-Loop	15.1 Cascade Control 288
Systems 204	15.2 Time-Delay Compensation 293
11.2 Model-Based Design Methods 206	15.3 Inferential Control 296
11.3 Controller Tuning Relations 211	15.4 Selective Control/Override Systems 297
11.4 Controllers with Two Degrees of	15.5 Nonlinear Control Systems 300
Freedom 216	15.6 Adaptive Control Systems 307
11.5 On-Line Controller Tuning 217	16. Multiloop and Multivariable Control 317
11.6 Guidelines for Common Control Loops 22311.7 Troubleshooting Control Loops 225	7
11.7 Hourseshooting Control Loops 223	16.1 Process Interactions and Control Loop
12. Control Strategies at the Process Unit Level 232	Interactions 317
· ·	16.2 Pairing of Controlled and Manipulated
12.1 Degrees of Freedom Analysis for Process	Variables 323
Control 232	16.3 Singular Value Analysis 33016.4 Tuning of Multiloop PID Control
12.2 Selection of Controlled, Manipulated, and Measured Variables 234	Systems 334
12.3 Applications 238	16.5 Decoupling and Multivariable Control
12.5 Applications 250	Strategies 334
13. Frequency Response Analysis and Control	16.6 Strategies for Reducing Control Loop
System Design 248	Interactions 336
13.1 Sinusoidal Forcing of a First-Order	W D1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Process 248	17. Digital Sampling, Filtering, and Control 344
13.2 Sinusoidal Forcing of an nth-Order	17.1 Sampling and Signal Reconstruction 344
Process 249	17.2 Signal Processing and Data Filtering 347

Controllers 360	22. Biosystems Control Design 456	
17.6 Minimum Variance Control 364	22.1 Process Modeling and Control in	
40 P 4 I Process Control 274	Pharmaceutical Operations 456	
18. Batch Process Control 371	22.2 Process Modeling and Control for Drug	
18.1 Batch Control Systems 373	Delivery 462	
18.2 Sequential and Logic Control 374		
18.3 Control During the Batch 380	23. Dynamics and Control of Biological Systems 470	
18.4 Run-to-Run Control 38618.5 Batch Production Management 387	24.1 Systems Biology 470	
18.5 Batch Froduction Management 387	24.2 Gene Regulatory Control 472	
Chapters 19 through 23 are online at	24.3 Signal Transduction Networks 476	
www.wiley.com/go/global/seborg		
	Appendix A: Laplace Transforms A-1	
19. Real-Time Optimization 395	A.1 The Laplace Transform of Representative Functions A-1	
19.1 Basic Requirements in Real-Time	A.2 Solution of Differential Equations by	
Optimization 396	Laplace Transform Techniques A-5	
19.2 The Formulation and Solution of RTO	A.3 Partial Fraction Expansion A-7	
Problems 399	A.4 Other Laplace Transform Properties A-10	
19.3 Unconstrained and Constrained Optimization 401	A.5 A Transient Response Example A-13	
19.4 Linear Programming 404	Appendix B: Digital Process Control Systems:	
19.5 Quadratic and Nonlinear	Hardware and Software A-21	
Programming 408		
	B.1 Distributed Digital Control Systems A-22 B.2 Analog and Digital Signals and Data	
20. Model Predictive Control 414	Transfer A-22	
20.1 Overview of Model Predictive Control 414	B.3 Microprocessors and Digital Hardware in	
20.2 Predictions for SISO Models 416	Process Control A-24	
20.3 Predictions for MIMO Models 421	B.4 Software Organization A-27	
20.4 Model Predictive Control Calculations 423	Annandiy C. Daview of Thermodynamic Concents	
20.5 Set-Point Calculations 427	Appendix C: Review of Thermodynamic Concepts for Conservation Equations A-34	
20.6 Selection of Design and Tuning		
Parameters 429	C.1 Single-Component Systems A-34 C.2 Multicomponent Systems A-35	
20.7 Implementation of MPC 434	C.2 Wuttleomponent Systems A-33	
21. Process Monitoring 439	Appendix D: Control Simulation Software A-36	
21.1 Traditional Monitoring	D.1 MATLAB Operations and Equation	
Techniques 440	Solving A-36	
21.2 Quality Control Charts 441	D.2 Computer Simulation with Simulink A-38	
21.3 Extensions of Statistical Process	D.3 Computer Simulation with LabVIEW A-40	
Control 447	Appendix E: Process Control Modules A-43	
21.4 Multivariate Statistical		
Techniques 449 21.5 Control Performance Monitoring 451	E.1. Introduction A-43	
23.5 Control refrontiance Monitoring 431	E.2. Module Organization A-43	

PART FIVE

SYSTEMS

APPLICATIONS TO BIOLOGICAL

17.3 z-Transform Analysis for Digital

17.4 Tuning of Digital PID Controllers 358 17.5 Direct Synthesis for Design of Digital

Control 352

E.3.	Hardware an	d Software Requirements	A-44
E.4.	Installation	A-44	

E.5. Running the Software A-44

Appendices F through K are online at www.wiley.com/go/global/seborg

Appendix F: Introduction to Plantwide Control A-45

F.1 Plantwide Control Issues A-45

F.2 Hypothetical Plant for Plantwide Control Studies A-47

F.3 Internal Feedback of Material and Energy A-51

F.4 Interaction of Plant Design and Control System Design A-59

Appendix G: Plantwide Control System Design A-63

G.1 Procedures for the Design of Plantwide Control Systems A-63

G.2 A Systematic Procedure for Plantwide Control System Design A-64

G.3 Case Study: The Reactor/Flash Unit Plant A-67

G.4 Effect of Control Structure on Closed-Loop Performance A-78

Appendix H: Dynamic Models and Parameters Used for Plantwide Control Chapters A-82

H.1 Energy Balance and Parameters for the Reactor/Distillation Column Model A-82

H.2 Core Reactor/Flash Unit Model and Parameters A-82

Appendix I: Instrumentation Symbols A-88

Appendix J: Review of Basic Concepts from Probability and Statistics A-90

J.1 Probability Concepts A-90

J.2 Means and Variances A-91

J.3 Standard Normal Distribution A-91

J.4 Error Analysis A-92

Appendix K: Contour Mapping and the Principle of the Argument A-93

K.1 Development of the Nyquist Stability Criterion A-93

Index I-1