

Advanced Rail Geotechnology - Ballasted Track

Buddhima Indraratna

Wadud Salim & Cholachat Rujikiatkamjorn

Contents

	Preface Foreword About the Authors		XI XV XVII	
Į	intr	oduction	1	
	1.1 1.2 1.3	Carbon Footprint and Implications	2 11 12	
2	Trac	k Structure and Rail Load	15	
	2.3 2.4	Types of Track Structure Components of a Ballasted Track Track Forces Load Transfer Mechanism Stress Determination	15 17 25 35 37	
3	Fact	tors Governing Ballast Behaviour	47	
		Aggregate Characteristics Loading Characteristics	47 53 57 67	
4		State-of-the-art Laboratory Testing and Degradation Assessment of Ballast 8		
		Monotonic Triaxial Testing Single Grain Crushing Tests Cyclic Triaxial Testing Impact Testing	81 87 88 97	

5		Geosynthetics and	
	Energy Absorbing Mats		107
	5.1 Ballast Response under Monotonic I	oading	107
	5.2 Single Particle Crushing Strength5.3 Ballast Response under Cyclic Loadin		124
	5.3 Ballast Response under Cyclic Loadin5.4 Ballast Response under Repeated Loa		126
	5.5 Effect of Confining Pressure	ading	134 136
	5.6 Energy Absorbing Materials: Shock I	Mats	138
6	Existing Track Deformation Models		145
	6.1 Plastic Deformation of Ballast		145
	6.2 Other Plastic Deformation Models		147
	6.3 Modelling of Particle Breakage		158
7	7 A Constitutive Model for Ballast		163
	7.1 Modelling of Particle Breakage		163
	7.2 Constitutive Modelling for Monoton		170
	7.3 Constitutive Modelling for Cyclic Lo	ading	184
	7.4 Model Verification and Discussion		190
8	3 Track Drainage and Use of Geotextiles		203
	8.1 Drainage		203
	8.2 Fouling Indices		206
	8.3 Geosynthetics in Rail Track		208
	8.4 Use of Geosynthetic Vertical Drains a	s a Subsurtace Drainage	213
9	Role of Subballast, its Drainage and Filti	ation Characteristics	219
	9.1 Subballast Selection Criteria		220
	9.2 Empirical Studies on Granular Filtrat		225
	9.3 Mathematical Formulations in Drain9.4 Constriction Size Distribution Model	age and Filtration	228
	9.5 Constriction Based Criteria for Assess	ing Filter Effectiveness	234
	9.6 Implications on Design Guidelines	sing ritter Effectiveness	238 240
	9.7 Steady State Seepage Hydraulics of Po	orous Media	242
	9.8 Subballast Filtration Behaviour under		244
	9.9 Time Dependent Geo-Hydraulic Filtra		
	Migration under Cyclic Loading		258
10	Field Instrumentation for Track Perform	nance Verification	273
	10.1 Site Geology and Track Construction	n	273
	10.2 Field Instrumentation		276

		•	Contents	IX
	10.3	Data Collection		282
	10.4	Results and Discussion	•	282
11	DEM	Modelling of Ballast Densification and Breakage		293
	11.1	Discrete Element Method and PFC ^{2D}		294
	11.2 11.3	Numerical Simulation of Monotonic and Cyclic Behaviour of	of	298
	11.4	Ballast using PFC ^{2D} Breakage Behaviour		299 307
	11.5	-		314
12	FEM	Modelling of Tracks and Applications to Case Studies		32 i
	12.1	Use of Geocomposite under Railway Track		321
	12.2	Design Process for Short PVDS under Railway Track		327
		4 -		
13	Non-	destructive Testing and Track Condition Assessment		335
	13.1	Laboratory Model Track		335
		GPR Method		338
	13.3	Multi-channel Analysis of Surface Wave Method		348
14	Track	Maintenance		357
	14.1	Track Maintenance Techniques		357
	14.2	Track Geotechnology and Maintenance in Cold Regions		361
15	Reco	mmended Ballast Gradations		367
		Australian Ballast Specifications		368
	15.2 15.3	International Railway Ballast Grading		370
	15.4	Gradation Effects on Settlement and Ballast Breakage Recommended Ballast Grading		371 373
	15.5	Conclusions		374
16	Bio-E	Engineering for Track Stabilisation		377
	16.1	Introduction		377
	16.2	1 5		378
	16.3	Verification of the Proposed Root Water Uptake Model		381

X Contents

Appendices	
Appendix A: Derivation of Partial Derivatives of $g(p, q)$ with respect to p and q from a First Order Linear Differential Equation	391
Appendix B: Determination of Model Parameters from Laboratory Experimental Results	393
Appendix C: A Pictorial Guide to Track Strengthening, Field Inspection and Instrumentation	399
Appendix D: Unique Geotechnical and Rail Testing Equipment	405
Subject Index	411