Join the discussion @ p2p.wrox.com Wrox Programmer to Programmer™

e

Foreword byaJasz Reinders, Direc"_tof,"~Paymllel Evangelist, Intel

Stephen Blair-Chappell, Andrew Stokes




CONTENTS

FOREWORD XXv

INTRODUCTION xxvii

ST 4
e ;) K L I A
JRIUC FIRIN EC EAE A

CHAPTER 1: PARALLELISM TODAY 3
The Arrival of Parallelism 3
The Power Density Race 3
The Emergence of Multi-Core and Many-Core Computing 4
The Top Six Challenges 7
Legacy Code 7
Tools 7
Education 8
Fear of Many-Core Computing 8
Maintainability 8
Return on Investment 9
Parallelism and the Programmer 9
Types of Parallelism 9
Intel’s Family of Parallel Models 10
Cilk Plus and Threading Building Blocks 10
Domain-Specific Libraries 1
Established Standards 1
Research and Development "
Choosing the Right Parallel Constructs 1
High-Level vs. Low-Level Constructs 12

Data Parallelism vs. General Parallelism 12
Examples of Mixing and Matching Parallel Constructs 12
Parallel Programming Errors 15
Data Races 15
Determinacy Races 15
Deadlocks 16
Poor Load Balancing 17
Threading/Tasking Overhead 17
Synchronization Overhead 17
Memory Errors 17



CONTENTS

Speedup and Scalability 19
Calculating Speedup 19
Predicting Scalability 21

Paralielism and Real-Time Systems 22
Hard and Soft Real-Time 22
A Hard Real-Time Example using RTX 23
Advice for Real-Time Programmers 23

Summary 24
CHAPTER 2: AN OVERVIEW OF PARALLEL STUDIO XE 25
Why Parallel Studio XE? 25
What’s in Parallel Studio XE? 26
Intel Parallel Studio XE 26
Intel Parallel Advisor 28

The Advisor Workflow 28
Surveying the Site 28
Annotating Code 29
Checking Suitability 29
Checking Correctness 30
Replacing Annotations 3

Intel Parallel Composer XE 31

Intel C/C++ Optimizing Compiler 31
Profile-Guided Optimization 32
Cilk Plus 33

OpenMP 37

Intel Threading Building Blocks 38

Intel Integrated Performance Primitives 40
An Application Example 41
IPP and Threading 42

Intel Parallel Debugger Extension 43

Intel Debugger 43

Math Kernel Library 44

VTune Amplifier XE 45

Hotspot Analysis 46

Concurrency Analysis 46

Locks and Waits Analysis 46

Dissassembly Source View 48

Parallel Inspector XE 48

Predefined Analysis Types 48

Errors and Warnings 49



CONTENTS

Static Security Analysis 51
Different Approaches to Using Parallel Studio XE 52
Summary 52

CHAPTER 3: PARALLEL STUDIO XE FOR THE IMPATIENT 53
The Four-Step Methodology 54
Example 1: Working with Cilk Plus 54

Obtaining a Suitable Serial Program 55
Running the Serial Example Program 57
Creating the Project 57
Running the Serial Version of the Code 58

Step 1: Analyze the Serial Program 60
Using Intel Parallel Amplifier XE for Hotspot Analysis 60

Step 2: Implement Parallelism using Cilk Plus 62
Step 3: Debug and Check for Errors 63
Checking for Errors 64
Narrowing the Scope of the Shared Variables 67
Adding Cilk Plus Reducers 68
Running the Corrected Application: 71

Step 4: Tune the Cilk Plus Program 71
Example 2: Working with OpenMP 73
Step 1: Analyze the Serial Program 74
Step 2: Implement Parallelism using OpenMP 74
Step 3: Debug and Check for Errors 75
Making the Shared Variables Private 75
Adding a Reduction Clause 76

Step 4: Tune the OpenMP Program 76
Improving the Load Balancing 80
Summary 84

2 L PARE o )

CHAPTER 4: PRODUCING OPTIMIZED CODE 87
Introduction 88
The Example Application 89
Optimizing Code in Seven Steps 90

Using the Compiler’s Reporting Features 91
Step 1: Build with Optimizations Disabled 91
Step 2: Use General Optimizations 93



CONTENTS

Using the General Options on the Example Application 94
Generating Optimization Reports Using /Qopt-report 95

Step 3: Use Processor-Specific Optimizations 96
What Is Auto-Vectorization? 97
Auto-Vectorization Guidelines 98
Turning On Auto-Vectorization 99
Enhancing Auto-Vectorization 99
Building for Non-Intel CPUs 100
Determining That Auto-Vectorization Has Happened 100
When Auto-Vectorization Fails 101
Helping the Compiler to Vectorize 103

Step 4: Add Interprocedural Optimization 108
Adding Interprocedural Optimization to the Example Application 108

The Impact of Interprocedural Optimization on Auto-Vectorization 109

Step 5: Use Profile-Guided Optimization 12
Benefits of Profile-Guided Optimization 12

The Profile-Guided Optimization Steps 13

The Results 116

Step 6: Tune Auto-Vectorization 16
Activating Guided Auto-Parallelization 16

An Example Session 17
More on Auto-Vectorization 118
Building Applications to Run on More Than One Type of CPU 18
Additional Ways to Insert Vectorization 120
Using Cilk Plus Array Notation 121
Manual CPU Dispatch: Rolling Your Own CPU-Specific Code 124
Source Code 125
Summary 130
CHAPTER 5: WRITING SECURE CODE 131
A Simple Security Flaw Example 132
Understanding Static Security Analysis 134
False Positives 135
Static Security Analysis Workflow 136
Conducting a Static Security Analysis 136
Investigating the Results of the Analysis 138
Working with Problem States 140

The Build Specification 145
Creating a Build Specification File by Injection 146
Utility Options 146

The Directory Structure of the Results 147



CONTENT!

Cilk Plus Reduction

Using Static Security Analysis in a QA Environment 149
Regression Testing 149
Metrics Tracking 150

Source Code 152

Summary 154

CHAPTER 6: WHERE TO PARALLELIZE 155

Different Ways of Profiling 156

The Example Application 157

Hotspot Analysis Using the Intel Compiler 158
Profiling Steps 159
An Example Session 160
Overhead Introduced by Profiling 163

Hotspot Analysis Using the Auto-Parallelizer 165
Profiling Steps ‘ 165
An Example Session 166
Programming Guidelines for Auto-Parallelism 168

Additional Options 168
Helping the Compiler to Auto-Parallelize 169

Hotspot Analysis with Amplifier XE . 171
Conducting a Default Analysis 171
Finding the Right Loop to Parallelize 172
Large or Long-Running Applications 174

Reducing the Size of Data Collected 174

Using the Pause and Resume APIs 175
Source Code 177
Summary 180
CHAPTER 7: IMPLEMENTING PARALLELISM 181

C or C++, That Is the Question 182

Taking a Simple Approach 183

The Beauty of Lambda Functions 183

Parallelizing Loops 185
The for Loop 185

The Cilk Plus cilk_for Loop 185
The OpenMP for Loop 187
The TBB for Loop 188
Nested for Loops 188
The for Loop with Reduction 189

190



CONTENTS

OpenMP Reduction 190

TBB Reduction 191

The while Loop 191
Cilk Plus 191
OpenMP 192

TBB 193
Parallelizing Sections and Functions 193
The Serial Version 194
Cilk Plus 195
OpenMP 196
TBB 197
Parallelizing Recursive Functions 198
The Serial Version 198
Cilk Plus 199
OpenMP 200
TBB 200
Parallelizing Pipelined Applications 201
Parallel Pipelined Patterns 202
The Serial Version 203
OpenMP 205
BB 206
Parallelizing Linked Lists 208
Serial Iteration of the Linked List 209
Parallel Iteration of the Linked List 209
Source Code 211
Summary 215
CHAPTER 8: CHECKING FOR ERRORS 217
Parallel Inspector XE Analysis Types 218
Detecting Threading Errors 219
Types of Threading Problems 219
Thread Information 219
Potential Privacy Infringement 220

Data Races 220
Deadlocks 220

An Example Application Involving Deadlocks 220
Detecting Deadlocks 221
Detecting Data Races 225
Running the Threaded Program 225
First Resuits of the Analysis 225



CONTENTS

Controlling the Right Level of Detail 227
Testing All the Code Paths 227
Avoiding Being Overwhelmed by the Amount of Data 228
Using Suppression Files 228

Fixing Data Races 233

Using Cilk Plus 233
Cilk Plus Reducers 234
Cilk Plus Holders 234

Using OpenMP 236
Using Locks 236
Using Critical Sections 236
Using Atomic Operations 236
Using a reduction Clause 237

Using TBB 237

Detecting Memory Errors 238

Types of Memory Errors 239

An Example Application for Memory Analysis 240

Creating a Custom Analysis 245
The Source Code 247
Summary 249
CHAPTER 9: TUNING PARALLEL APPLICATIONS 251
Introduction 251
Defining a Baseline 252

Ensuring Consistency 252

Measuring the Performance Improvements 253

Measuring the Baseline Using the Amplifier XE Command Line 253

Identifying Concurrency Hotspots 255
Thread Concurrency and CPU Usage 255
Identifying Hotspots in the Code 256

Analyzing the Timeline 258
Questions to Answer 259
Fixing the Critical Section Hotspot 260

Analyzing an Algorithm 261

Conducting Further Analysis and Tuning 264

Using Other Viewpoints 268

Using Locks and Waits Analysis 268

Other Analysis Types 269

Using the Intel Software Autotuning Tool 271

Source Code 272

Summary 275



CONTENTS

CHAPTER 10: PARALLEL ADVISOR—-DRIVEN DESIGN 277
Using Parallel Advisor 277
Understanding the Advisor Workflow 279
Finding Documentation 280
Getting Started with the NQueens Example Program 280
Surveying the Site 282
Running a Survey Analysis 282
The Survey Report 282
Finding Candidate Paraliel Regions 283

The Survey Source Window 284

How Survey Analysis Works 285
Annotating Your Code 286
Site Annotations 286
Lock Annotations 287
Adding Annotations 288
Checking Suitability 290
Running a Suitability Analysis 290
The Suitability Report 291
Parallel Choices 292
Using the Suitability Report 293

How Suitabitity Analysis Works 294
Checking for Correctness 295
Running a Correctness Analysis 296
The Correctness Report 296

The Correctness Source Window 297
Understanding Common Problems 298
Using the Correctness Report 301
Correctness Analysis Limitation 301
How Correctness Analysis Works 302
Replacing Annotations 304
The Summary Report 304
Common Mappings 305
Summary 308
CHAPTER 11: DEBUGGING PARALLEL APPLICATIONS 309
Introduction to the Intel Debugger 309
The Parallel Debugger Workflow 310
Using the Intel Debugger to Detect Data Races 31
Building the Serial Program 312
Adding Parallelism 313



CONTENTS

Observing the Results 315
Serializing the Parallel Code 315
Detecting Data Races 317
Using Filters 319
Using Suppression Filters to Discard Unwanted Events 319
Creating the Filters 320
Fixing the Data Races 323
Using Focus Filters to Examine a Selected Portion of Code 325
Creating the Filters 327
Correcting the mbox Data Race 329
More About Filters 332
Runtime Investigation: Viewing the State of Your Application 333
Using the OpenMP Tasks Window to Investigate Variables
Within a Parallel Region 334
Using the OpenMP Spawn Tree Wlndow to View the Behavior
of Parallel Code 336
Summary 339
CHAPTER 12: EVENT-BASED ANALYSIS WITH VTUNE AMPLIFIER XE 341
Testing the Health of an Application 342
What Causes a High CPI? 342
Is CPl on Its Own a Good Enough Measure of Health? 343
Conducting a System-Wide Analysis 343
Conducting a Hotspot Analysis 345
Hotspot Analysis Types 346
User Mode Hotspots Versus Lightweight Hotspots 346
Finding Hotspots in Code 350
Conducting a General Exploration Analysis 352
A Quick Anatomy Class 355
CPU Internals 355
Categories of Execution Behavior 356
Fixing Hardware Issues 358
Reducing Cache Misses 359
Using More Efficient Instructions 360
Using the Intel Compiler 361
Using Amplifiers XE’s Other Tools 364
Using Predefined Analysis Types 364
Using Viewpoints 364
Using APIs 366
The Pause and Resume API 366

The Frame API

368



CONTENTS

Using Amplifier XE from the Command Line 369
Finding More Information 370
The Example Application 371
Summary 374

CHAPTER 13;: THE WORLD’S FIRST SUDOKU “THIRTY-NINER” 377
The Sudoku Optimization Challenge 377
The Nature of the Challenge 378
The High-Level Design 379
Optimizing the Solver Using SSE Intrinsics 380
Adding Parallelism to the Generator 382
The Results 383
Hands-On Example: Optimizing the Sudoku Generator 384
About the Code 385
The Solver 386
Finding Hotspots in the Solver 388
Optimizing the Code Using SSE Intrinsics 390

The Generator 390
Finding the Hotspots in the Generator 391
Adding Parallelism to the Generator Using OpenMP 391
Checking Correctness in the Generator 392
Fixing Correctness in the Generator 393
Tuning Performance 394
Summary 396
CHAPTER 14: NINE TIPS TO PARALLEL-PROGRAMMING HEAVEN 397
The Challenge: Simulating Star Formation 397
The Formation of Stars 398
The Hands-On Activities 399
"~ Performance Tuning 400
Application Heuristics 400
Finding the Hotspots : 400
Using a Tree-Based N-Bodies Simulation . 403
Using a Hashed Octree 405
Architectural Tuning 407
Adding Parallelism 410

Identifying the Hotspot and Discovering the Calling Sequence 410



CONTENTS

Implementing Parallelism 410
Detecting Data Races and Other Potential Errors 412
Correcting the Data Race 413
Load Balancing 414
The Results 415
Summary 416
CHAPTER 15: PARALLEL TRACK FITTING IN THE CERN COLLIDER 419
The Case Study 419
The Stages of a High-Energy Physics Experiment 420
The Track Reconstruction Stages 421
Track Finding 423
Track Fitting 425
What Is Array Building Blocks? 427
Parallelizing the Track-Fitting Code 430
Adding Array Building Blocks to Existing Code 430
Code Refactoring 431
An Example of Class Change ‘ 431

An Example of Kernel Code Change 432
Changing to Structure of Arrays 433

The Results 434
Correctness 435
Speedup and Scalability 435
Parallelism and Concurrency 438

The Hands-On Project 440
The Activities 440
The Projects 441
Building and Running the Serial Version 41
The Serial Track-Fitting Code 41

The Application Output 443
Parallelizing the Track-Fitting Code 444
Configuring the Array Building Blocks Build Environment 444
Writing the Parallel Driver 448
Identifying the Kernel in the Driver 449
Allocating and Binding 450
Invoking the Kernel 452
Implementing the Kernel 454
Summary 460



CONTENTS

CHAPTER 16: PARALLELIZING LEGACY CODE 463
introducing the Dhrystone Benchmark 464
The Structure of the Code 464
Global and Shared Variables 464
The Hands-On Projects 466
Building the Projects 466
Project Targets 466

An Example Build 467
Adding Ampilifier XE APIs to Timestamp the Dhrystone Loop 468
Viewing the Results 469
Parallelizing the C Version 472
Attempt One: Synchronizing Shared Variable Access 472
The Results 473

Is It Successful? 475
Attempt Two: Duplicating Global Variables 476
Initializing and Accessing the Global Variables 477

The Results 477

Is It Successful? 478
Parallelizing the C++ Version 478
Attempt Three: Wrapping the Application in a C++ Class 479
Scheduling the Parallel Runs 480
Silencing the Output 480

The Results 481

Is It Successful? . 482
Attempt Four: Using Cilk Plus Holders 482
Developing the Wrappers 483

The Results 486

Is It Successful? 486
Overview of the Results 487
Performance 487
Editing Effort 488
Summary 488
INDEX 489



