MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES

Economic, Technical, and Renewable Comparisons

GARY C. YOUNG

CONTENTS

Preface Professional Biography		ix
		xi
1	Introduction to Gasification / Pyrolysis and Combustion	
	Technology(s)	1
	Historical Background and Perspective	1
	Introduction	2
	What is Pyrolysis?	3
	What is Pyrolysis/Gasification?	5
	What is Conventional Gasification?	6
	What is Plasma Arc Gasification?	8
	What is Mass Burn (Incineration)?	9
	Which Thermal Process Technology is the Most Efficient	
	and Economical?	10
	Performance/Thermal Efficiency of Technologies	10
	What is the Economic Comparison Between the	10
	Thermal Processes?	10
	References	15
2	How Can Plasma Arc Gasification Take Garbage to Electricity	
	and a Case Study?	16
	Basis	19
	Economic Cases	19
	Logical Approach for Future Progress	20
	References	21
	Research	21
3	How Can Plasma Arc Gasification Take Garbage to Liquid Fuels	
	and Case Studies?	23
	MOWER CO. I. T. T. T. XV. CO. T.	
	MSW To Syngas to Liquid Fuels Via Chemistry	22
	(Fischer–Tropsch Synthesis) and a Case Study	23
	Basis	26
	Economic Case	27
	Logical Approach for Future Progress	28
	MSW to Syngas to Liquid Fuel via Biochemistry and a Case Study	29

vi CONTENTS

	Basis and Economics References	31 33
4	Plasma Economics: Garbage/Wastes to Electricity, Case Study	
	with Economy of Scale	35
	Conclusions and Recommendations (Opinions)	39
	References	40
5	Plasma Economics: Garbage/Wastes to Power Ethanol Plants and a Case Study	41
	Basis	44
	Economic Cases	45
	Logical Approach for Future Progress References	46 47
6	From Curbside to Landfill: Cash Flows as a Revenue Source for Waste Solids-to-Energy Management	49
	References	123
7	Plasma Economics: Garbage/Wastes to Power, Case Study with Economics of a 94 ton/day Facility	124
	More Recent Events About the Project	126
	References	128
8	Plant Operations: Eco-Valley Plant in Utashinai, Japan:	
	An Independent Case Study	129
	References	133
9	Municipal Solid Waste and Properties	135
	What is Municipal Solid Waste (MSW) and How Much	
	is Generated in the United States?	135
	MSW Properties References	137 153
	References	155
10	MSW Processes to Energy with High-Value Products and Specialty By-Products	155
		155
	Production of Ammonia (NH ₃) from Syngas via Chemical Synthesis Route	157
	Production of Gas to Liquids from Syngas via Chemical	
	Synthesis Route Production of Mathemat (CH OH) from Sympos via Chamical	158
	Production of Methanol (CH ₃ OH) from Syngas via Chemical Synthesis Route	164
	Production of Synthetic Natural Gas (SNG) from Syngas	101
	via Chemical Synthesis Route	167

ii	
	н

	Production of Hydrogen (H ₂) from Syngas via Chemical	
	Synthesis Route(s)	169
	Gasifier	172
	Air Separation Unit (ASU)	172
	Hot Gas Cleanup System	173
	Sulfuric Acid Plant	173
	CO2-Rich Separated Gas Stream/Conventional	
	Turbine Expander	173
	Production of Ethanol (CH ₃ CH ₂ OH) from Syngas via Chemical	
	Synthesis Route	175
	Production of Ethanol and Methanol from Syngas using	
	Fischer–Tropsch Synthesis Process	175
	Production of Ethanol from Syngas via a Bio-Chemical	
	Synthesis Route	178
	Production of Ethanol via a Combination of Chemical	
	and Bio-Chemical Synthesis Routes Using Biomass	
	(Cellulosic Material)	181
	Oxosynthesis (Hydroformylation): Syngas and Olefinic	
	Hydrocarbons and Chemical Synthesis	186
	Slag or Vitrified Slag or Ash from Gasification Reactor and	
	Specialty By-Product Options	188
	Vitrified Slag, Slag, and Ashes: Research and Development	
	(R&D), Marketing, and Sales	192
	Process for Resolving Problems with Ashes	192
	Production of Road Material from Slag and Vitrified Slag	196
	Production and Uses of Rock Wool, Stone Wool, and Mineral Wool	197
	Production of Aggregate	200
	Production of Flame-Resistant Foam	200
	Destruction of Asbestos Wastes via Vitrification	201
	Discussion of Potential Markets for the Vitrified Slag	202
	References	204
	ACTOIOTOS	207
4.4	MOW CLIC LD F	• • •
11	MSW Gasifiers and Process Equipment	208
	Conventional Gasifiers/Gasification Reactors	210
	ChevronTexaco Entrained-Flow Gasifier	212
	E-Gas™ Entrained-Flow Gasifier	213
	Shell Entrained-Flow Gasifier	214
	Lurgi Dry-Ash Gasifier and British Gas/Lurgi Gasifier	215
	Prenflo Entrained Bed Gasifier	217
	Noell Entrained Flow Gasifier	218
	High-Temperature Winkler Gasifier,	218
	KRW Fluidized Bed Gasifier	219
	Plasma Arc Gasification Technology	221
	Alter Nrg Plasma Gasifier (Westinghouse Plasma	221
	Corporation) System	222
	Corporation, by broth	442

	EUROPLASMA, Plasma Arc System	223
	Phoenix Solutions Plasma Arc Torches, Phoenix Solutions	
	Company (PSC)	226
	PyroGenesis Plasma-Based Waste to Energy	227
	Integrated Environmental Technologies, LLC (InEnTec)	227
	Other Gasification Technology	230
	Thermoselect Process by Interstate Waste Technologies	230
	Primenergy's Gasification System at Moderate Temperatures	231
	Nexterra's Gasification System at Moderate Temperatures	234
	Other Process Equipments	234
	Candle Filter	234
	Pressure Swing Adsorption (PSA) Units	235
	Mercury Removal Systems	236
	Main Sulfur Removal Technologies	236
	Combustion Turbine for Syngas and Gas Engine for Syngas	237
	Siemens-Westinghouse Syngas Combustion Turbine for Syngas	237
	General Electric (GE) Combustion Turbine for Syngas	238
	GE Gas Engine for Syngas	240
	Noncontact Solids Flow Meter for Waste Solids (RayMas [®] Meter)	241
	References	251
12	Other Renewable Energy Sources	255
	Wind Energy: Introduction	255
	Big Wind Systems to Energy	258
	Economic Example and Cases	259
	Discussion of Economics For the Large Wind Farm Cases	266
	Economy of Scale Associated With Wind Farms	270
	Small Wind Systems to Energy	272
	Discussion of Economics for the Small Wind Farm Cases	279
	Hydroelectric Energy: Introduction	280
	Hydroelectric Mill Dam: Nashua, Iowa	283
	Discussion of the Nashua Hydroelectric Economic Analyses	285
	Hydroelectric Mill Dam: Delhi, Iowa	293
	Discussion of the Delhi Hydroelectric Economic Analyses	294
	Hydroelectric Mill Dam: Fort Dodge, Iowa	298
	Discussion of the Fort Dodge Hydroelectric Economic Analyses Daily Flow and Production Methodology, Fort Dodge Mill Dam	305
	Hydroelectric Facility	316
	References	360
13	Waste Energy to Recycled Energy	362
	Introduction	362
	References	378
Index		379