

	Preface xv	2-7	Numbering Systems 45
		2-8	Sand Casting 46
Part 1	Basics 2	2-9	Shell Molding 47
		2-10	Investment Casting 47
1	Introduction to Mechanical	2-11	Powder-Metallurgy Process 47
•	Engineering Design 3	2-12	Hot-Working Processes 47
		2-13	Cold-Working Processes 48
1-1	Design 4	~2 ~ 14	The Heat Treatment of Steel 49
1-2	Mechanical Engineering Design 5	2-15	Alloy Steels 52
1-3	Phases and Interactions of the Design	2-16	Corrosion-Resistant Steels 53
	Process 5	2-17	Casting Materials 54
1-4	Design Tools and Resources 8	2-18	Nonferrous Metals 55
1-5	The Design Engineer's Professional Responsibilities 10	2-19	Plastics 58
1-6	Standards and Codes 12	2-20	Composite Materials 60
1-7	Economics 12	2-21	Materials Selection 61
1-8	Safety and Product Liability 15		Problems 67
1-8			
1-10	Stress and Strength 15	3	Load and Stress
1-10	Uncertainty 16 Design Factor and Factor of Safety 17	•	Analysis 71
			•
1-12	Reliability 18	3-1	Equilibrium and Free-Body
1-13	Dimensions and Tolerances 19	2.0	Diagrams 72
1-14	Units 21	3-2	Shear Force and Bending Moments in Beams 77
1-15	Calculations and Significant Figures 22	3-3	Singularity Functions 79
1-16	Design Topic Interdependencies 23	3-3 3-4	Stress 79
1-17	Power Transmission Case Study	3 -4 3-5	Cartesian Stress Components 79
	Specifications 24 Problems 26	3-5 3-6	Mohr's Circle for Plane Stress 80
	Problems 20	3-0 3-7	General Three-Dimensional Stress 86
2	Materials 31	3- <i>7</i> 3-8	Elastic Strain 87
		3-8 3-9	
2-1	Material Strength and Stiffness 32		Uniformly Distributed Stresses 88
2-2	The Statistical Significance of Material	3-10 3-11	Normal Stresses for Beams in Bending 89
	Properties 36		Shear Stresses for Beams in Bending 94 Torsion 101
2-3	Strength and Cold Work 38	3-12	
2-4	Hardness 41	3-13	Stress Concentration 110
2-5	Impact Properties 42	3-14	Stresses in Pressurized Cylinders 113
2-6	Temperature Effects 43	3-15	Stresses in Rotating Rings 115

Press and Shrink Fits 116	5-6	Coulomb-Mohr Theory for Ductile
Temperature Effects 117		Materials 228
Curved Beams in Bending 118	5-7	Failure of Ductile Materials
Contact Stresses 122	5-8	Summary 231
Summary 126 Problems 127	3-0	Maximum-Normal-Stress Theory for Brittle Materials 235
•	5-9	Modifications of the Mohr Theory for Brittle Materials 235
Deflection and	5-10	Failure of Brittle Materials
Stiffness 147		Summary 238
Spring Rates 148	5-11	Selection of Failure Criteria 238
Tension, Compression, and Torsion 149	5-12	Introduction to Fracture Mechanics 239
Deflection Due to Bending 150	5-13	Stochastic Analysis 248
Beam Deflection Methods 152	5-14	Important Design Equations 254
Beam Deflections by		Problems 256
Superposition 153		
Beam Deflections by Singularity	. 6	Fatigue Failure Resulting
Functions 156		from Variable Loading 265
Strain Energy 162		
Castigliano's Theorem 164	6-1	Introduction to Fatigue in Metals 266
Deflection of Curved Members 169	6-2	Approach to Fatigue Failure in Analysis and
Statically Indeterminate Problems 175		Design 272
Compression Members—General 181	6-3	Fatigue-Life Methods 273
Long Columns with Central Loading 181	6-4	The Stress-Life Method 273
Intermediate-Length Columns with Central	6-5	The Strain-Life Method 276
Loading 184	6-6	The Linear-Elastic Fracture Mechanics
Columns with Eccentric Loading 184	47	Method 278
Struts or Short Compression Members 188	6-7	The Endurance Limit 282
Elastic Stability 190	6-8	Fatigue Strength 283
Shock and Impact 191	6-9	Endurance Limit Modifying Factors 286
Problems 192	6-10	Stress Concentration and Notch Sensitivity 295
	6-11	Characterizing Fluctuating Stresses 300
Failure Prevention 212	6-12	Fatigue Failure Criteria for Fluctuating Stress 303
Failures Resulting from	6-13	Torsional Fatigue Strength under
Static Loading 213		Fluctuating Stresses 317
•	6-14	Combinations of Loading Modes 317
Static Strength 216 Stress Concentration 217	6–15	Varying, Fluctuating Stresses; Cumulative
	6-16	Fatigue Damage 321
Failure Theories 219		Surface Fatigue Strength 327
Maximum-Shear-Stress Theory for Ductile Materials 219	6-1 <i>7</i> 6-18	Stochastic Analysis 330
Distortion-Energy Theory for Ductile	0-10	Road Maps and Important Design Equations for the Stress-Life Method 344
Materials 221		Problems 348
		**VINUIN JTO

Part 3	Design of Mechanical Elements 358	9-5 9-6	The Strength of Welded Joints 489 Static Loading 492
7	Shafts and Shaft	9-7 9-8	Fatigue Loading 496
,		9-9	Resistance Welding 497
	Components 359	7-7	Adhesive Bonding 498
7-1	Introduction 360		Problems 507
7-2	Shaft Materials 360	10	Mechanical Springs 517
7-3	Shaft Layout 361		. •
7-4	Shaft Design for Stress 366	10-1	Stresses in Helical Springs 518
7-5	Deflection Considerations 379	10-2	The Curvature Effect 519
<i>7</i> -6	Critical Speeds for Shafts 383	10-3	Deflection of Helical Springs 520
<i>7-7</i>	Miscellaneous Shaft Components 388	10-4	Compression Springs 520
7-8	Limits and Fits 395	10-5	Stability 522
	Problems 400	10-6 ° °″10-7	Spring Materials 523
٥	Carrage Products 141	10-7	Helical Compression Spring Design for Static Service 528
8	Screws, Fasteners, and the	10-8	Critical Frequency of Helical Springs 534
	Design of Nonpermanent Joints 409	10-9	Fatigue Loading of Helical Compression Springs 536
8-1 8-2	Thread Standards and Definitions 410	10-10	Helical Compression Spring Design for Fatigue Loading 539
8-2 8-3	The Mechanics of Power Screws 414	10-11	Extension Springs 542
8-3 8-4	Threaded Fasteners 422	10-12	Helical Coil Torsion Springs 550
8-5	Joints—Fastener Stiffness 424	10-13	Belleville Springs 557
8-6	Joints—Member Stiffness 427 Bolt Strength 432	10-14	Miscellaneous Springs 558
8- <i>7</i>	Tension Joints—The External Load 435	10-15	Summary 560
8-8	Relating Bolt Torque to Bolt Tension 437		Problems 560
8-9	Statically Loaded Tension Joint with		
	Preload 440	11	Rolling-Contact
8-10	Gasketed Joints 444		Bearings 569
8-11	Fatigue Loading of Tension Joints 444	11-1	Bearing Types 570
8-12	Bolted and Riveted Joints Loaded in	11-2	Bearing Life 573
	Shear 451	11-3	Bearing Load Life at Rated Reliability 574
	Problems 459	11-4	Bearing Survival: Reliability versus Life 576
9	Welding, Bonding	11-5	Relating Load, Life, and Reliability 577
_	and the Design	11-6	Combined Radial and Thrust Loading 579
	of Permanent Joints 475	11 <i>-7</i>	Variable Loading 584
9-1	Welding Symbols 476	11-8	Selection of Ball and Cylindrical Roller Bearings 588
9-2	Butt and Fillet Welds 478	l 1-9	Selection of Tapered Roller Bearings 590
9-3	Stresses in Welded Joints in Torsion 482	11-10	Design Assessment for Selected
9-4	Stresses in Welded Joints in Bending 487	- • •	Rolling-Contact Bearings 599

11-11	Lubrication 603	13-1 <i>7</i>	Force Analysis—Worm Gearing 714
11-12	Mounting and Enclosure 604		Problems 720
•••	Problems 608		
		14	Spur and Helical Gears 733
12	Lubrication and Journal	14-1	The Lewis Bending Equation 734
	Bearings 617	14-2	Surface Durability 743
12-1	Types of Lubrication 618	14-3	AGMA Stress Equations 745
12-1	Viscosity 619	14-4	AGMA Strength Equations 747
	•	14-5	Geometry Factors I and J (Z_I and Y_J) 751
12-3	Petroff's Equation 621 Stable Lubrication 623	14-6	The Elastic Coefficient $C_p(Z_E)$ 756
12-4		14-7	Dynamic Factor K_v 756
12-5	Thick-Film Lubrication 624	14-8	Overload Factor K_o 758
12-6	Hydrodynamic Theory 625	14-9	Surface Condition Factor $C_f(Z_R)$ 758
12-7	Design Considerations 629	14-10	Size Factor K_s 759
12-8	The Relations of the Variables 631	14-11	Load-Distribution Factor $K_m(K_H)$ 759
12-9	Steady-State Conditions in Self-Contained	14-12	Hardness-Ratio Factor $C_H(Z_w)$ 761
12-10	Bearings 645	14-13	Stress Cycle Life Factors Y_N and $Z_N = 762$
12-10	Clearance 648	14-14	Reliability Factor K_R (Y_Z) 763
12-11	Pressure-Fed Bearings 650	14-15	Temperature Factor $K_T(Y_\theta)$ 764
12-12	Loads and Materials 656	14-16	= 1, 1,
12-13	Bearing Types 658	14-17	Rim-Thickness Factor K _B 764
12-14	Thrust Bearings 659		Safety Factors S_F and S_H 765
12-15	Boundary-Lubricated Bearings 660	14-18	Analysis 765
	Problems 669	14-19	Design of a Gear Mesh 775
			Problems 780
13	Gears—General 673	15	Bevel and Worm Gears 785
13-1	Types of Gear 674		Bevel and Worm Gears 785
13-2	Nomenclature 675	15-1	Bevel Gearing—General 786
13-3	Conjugate Action 677	15-2	Bevel-Gear Stresses and Strengths 788
13-4	Involute Properties 678	15-3	AGMA Equation Factors 791
13-5	Fundamentals 678	15–4	Straight-Bevel Gear Analysis 803
13-6	Contact Ratio 684	15-5	Design of a Straight-Bevel Gear Mesh 806
13-7	Interference 685	15-6	Worm Gearing—AGMA Equation 809
13-8	The Forming of Gear Teeth 687	1 <i>5-7</i>	Worm-Gear Analysis 813
13-9	Straight Bevel Gears 690	15-8	Designing a Worm-Gear Mesh 816
13-10	Parallel Helical Gears 691	15 -9	Buckingham Wear Load 820
13-11	Worm Gears 695		Problems 821
13-12	Tooth Systems 696		
13-13	Gear Trains 698	16	Clutches, Brakes, Couplings,
13-14	Force Analysis—Spur Gearing 705		and Flywheels 825
13-15	Force Analysis—Spur Gearing 703 Force Analysis—Bevel Gearing 709	16-1	•
13-16	Force Analysis—Bevel Gearing 709 Force Analysis—Helical	16-2	Static Analysis of Clutches and Brakes 827 Internal Expanding Rim Clutches and
	Gearing 712	10-2	Brakes 832

Problems 951

16-3	External Contracting Rim Clutches and Brakes 840	Part 4	Analysis 100is 952
16-4	Band-Type Clutches and Brakes 844	19	Finite-Element Analysis 953
16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11	Frictional-Contact Axial Clutches 845 Disk Brakes 849 Cone Clutches and Brakes 853 Energy Considerations 856 Temperature Rise 857 Friction Materials 861 Miscellaneous Clutches and Couplings 864 Flywheels 866	19-1 19-2 19-3 19-4 19-5 19-6 19-7	The Finite-Element Method 955 Element Geometries 957 The Finite-Element Solution Process 959 Mesh Generation 962 Load Application 964 Boundary Conditions 965 Modeling Techniques 966 Thermal Stresses 969
17	Problems 871 Flexible Mechanical Elements 879	19-9 19-10 19-11	Critical Buckling Load 969 Vibration Analysis 971 Summary 972 Problems 974
17-1 17-2 17-3 17-4 17-5 17-6 17-7	Belts 880 Flat- and Round-Belt Drives 883 V Belts 898 Timing Belts 906 Roller Chain 907 Wire Rope 916 Flexible Shafts 924 Problems 925 Power Transmission Case Study 933	20-1 20-2 20-3 20-4 20-5	Statistical Considerations 977 Random Variables 978 Arithmetic Mean, Variance, and Standard Deviation 980 Probability Distributions 985 Propagation of Error 992 Linear Regression 994 Problems 997
18-1 18-2 18-3 18-4 18-5 18-6 18-7	Design Sequence for Power Transmission 935 Power and Torque Requirements 936 Gear Specification 936 Shaft Layout 943 Force Analysis 945 Shaft Material Selection 945 Shaft Design for Stress 946	A B	Appendixes Useful Tables 1003 Gear Equations (in SI Units) Based on AGMA Standards 1059 Answers to Selected
18-8 18-9 18-11 18-12	Shaft Design for Deflection 946 Bearing Selection 947 Key and Retaining Ring Selection 948 Final Analysis 951		Problems 1065 Index 1071