Contents

	Preface to the second edition Preface to the first edition Acknowledgements (second edition) Acknowledgements (first edition) Author					
1	Revie	ew of some fundamentals	1			
	1.1	Introduction 1				
	1.2	The role of modelling (linear and nonlinear, discrete				
		and continuous systems, deterministic and random data)	2			
	1.3	Some definitions and methods 4				
		1.3.1 The phenomenon of beats 7				
		1.3.2 Displacement, velocity and acceleration 9				
		1.3.3 Quantification of vibration				
		level and the decibel scale 10				
	1.4	Springs, dampers and masses 14				
	1.5	Summary and comments 19				
2	Matl	hematical preliminaries	21			
	2.1	1 Introduction 21				
	2.2	Fourier series and Fourier transform 21				
		2.2.1 Periodic functions: Fourier series 22				
		2.2.2 Nonperiodic functions: Fourier transform 29				
		2.2.3 Main properties of Fourier transforms 33				
		2.2.4 Some mathematical facts 36				
		2.2.5 The bandwidth theorem (uncertainty principle) 3	19			

	2.3	Laplace	e transform 40	
		2.3.1	Laplace transforms: Basic	
			properties and some examples 42	
	2.4	Dirac a	lelta and related topics 48	
		2.4.1	A short introduction to distributions 53	
	2.5	The no	tion of Hilbert space 62	
		2.5.1	Hilbert spaces l ² and L ² 67	
			2.5.1.1 The spaces $l^2(C)$ and $l^2(R)$ 67	
			2.5.1.2 The space L^2 68	
		2.5.2	Sturm–Liouville problems 72	
		2.5.3	Some generalisations 79	
3	Anal	ytical n	nechanics: An overview	83
	3.1		action 83	
	3.2	•	s of material particles 84	
		3.2.1	Generalised coordinates, constraints	
			and degrees of freedom 85	
	3.3	The pr	inciple of virtual work and d'Alembert's	
		princip	le: Lagrange's and Hamilton's equations 87	
		3.3.1	Hamilton's equations 91	
	3.4	Lagran	ige's equations: Fundamental properties,	
		some g	eneralisations and complements 93	
		3.4.1	Invariance in form of LEs and monogenic forces	93
		3.4.2	The structure of the kinetic energy	
			and the conservation of energy 94	
		<i>3.4.3</i>	Elastic forces, viscous forces and	
			Rayleigh dissipation function 97	
		3.4.4	More coordinates than degrees	
			of freedom: Lagrange's multipliers 99	
	3.5	Hamil	ton's principle 102	
		3.5.1	More than one independent variable: The	
			equation of motion of continuous systems 107	
		3.5.2	The boundary terms in Hamilton's	
			principle: Natural boundary conditions 109	
	3.6	Small-	amplitude oscillations 112	
4	Sing	le degre	ee of freedom systems	119
	4.1	Introd	uction 119	
	4.2	Harme	onic oscillator I: Free vibration 120	
		421	Undamped free whrations 121	

		4.2.2	Damped f	ree vibration 124			
				Case 1. Critically damped			
				motion: $\zeta = 1$ ($c = c_{cr}$) 125			
				Case 2. Overdamped			
				motion: $\zeta > 1$ $(c > c_{cr})$ 125			
				Case 3. Underdamped			
				motion: $0 < \zeta < 1 \ (c < c_{cr}) \ 126$			
		4.2.3		nic decrement 128			
		4.2.4	Further ar	nalogies 130			
	4.3	Harmo	nic oscillat	or II: Forced vibration 131			
		4.3.1	Forced vil	pration: Harmonic excitation 132			
		4.3.2	Force tran	smissibility and harmonic			
				the support 137			
		4.3.3	•	response of damped and			
				d SDOF systems 140			
		4.3.4	-	rgy considerations 142			
	4.4	Damping in real systems, equivalent viscous damping 144					
		4.4.1		ient of damping 147			
				Free-vibration decay 147			
			4.4.1.2	Resonant response 148			
				Half-power bandwidth 149			
				Energy loss per cycle 149			
			4.4.1.5	Frequency response function 150			
	4.5	Summa	iry and con	nments 154			
5	More	e SDOF	systems: 5	Shock response, transient response			
_			proximate		157		
		_	-				
			action 157				
	5.2		me domain: Impulse response				
		-		amel integral 158			
		5.2.1		n due to support motion 168			
		5.2.2		of shock and response spectrum 170			
	5.3						
		-	•	and transfer function 175			
		5.3.1		to periodic excitation 175			
		5.3.2		nd Laplace transform methods 178			
		5.3.3		hip between the			
				ising functions in time,			
		_		and Laplace domains 182			
	5.4	Genera	ilised SDO	F systems 184			

		_					
		, , ,					
6	Multi	iple degrees of freedom (MDOF) systems 2	01				
	6.1	Introduction 201					
	6.2	A simple undamped 2-DOF system: Free vibration 202					
		Undamped n-DOF systems: Free vibration 206					
		6.3.1 Eigenvectors' orthogonality					
		relations and normalisation 209					
		6.3.2 General solution of the undamped free-vibration					
		problem, degeneracy and normal coordinates 213					
		6.3.2.1 Eigenvalue degeneracy 215					
		6.3.2.2 Normal coordinates 216					
	6.4	Eigenvalues and eigenvectors sensitivity analysis 224					
		6.4.1 Light damping as a perturbative term 229					
	6.5	A few considerations on the structure and					
		properties of the matrices M, K and C 231					
		6.5.1 Mass properties 232					
		6.5.2 Elastic properties 234					
		6.5.3 More mass- and stiffness-orthogonality conditions 2	39				
		Unrestrained systems: Rigid-body modes 240					
	6.7	Damped systems: Proportional and					
		nonproportional damping 246					
		6.7.1 Proportional damping 246					
		6.7.2 Nonproportional damping 250					
	6.8 Generalised and complex eigenvalue						
		problems: Reduction to standard form 253					
		6.8.1 Undamped systems 253					
	- 0	6.8.2 Viscously damped systems 256					
	6.9	Summary and comments 260					
7	More	More MDOF systems: Forced vibration and response analysis 26.					
	7.1	Introduction 263					
	7.2	Mode superposition 264					
		7.2.1 Mode displacement and mode acceleration methods 2	269				
	7.3	Harmonic excitation: Proportional viscous damping 271					
	7.4	Time-domain and frequency-domain response 274					
		7.4.1 A few comments on FRFs 276					
		7.4.2 More on FRFs: Kramers–Kronig relations 278					
	7.5	Systems with rigid-body modes 281					

	7.6 The case of nonproportional viscous damping 282			
		7.6.1	Harmonic excitation and	
			receptance FRF matrix 285	
	7.7	MDOI	systems with hysteretic damping 289	
	7.8	,		
		Laplac	e transform and direct integration 291	
		7.8.1	Laplace transform method 292	
		7.8.2	Direct integration methods 293	
	7.9	Freque	ncy response functions of a 2-DOF system 296	
	7.10	Summo	ary and comments 305	
8	Cont	inuous	systems	309
	8.1	Introdi	uction 309	
	8.2 The flexible string in transverse motion 310			
	·	8.2.1	The initial value problem 313	
		8.2.2	•	
		8.2.3		
		8.2.4		
8.3 Free vibration of a finite string: Standing				
8.4 Axial and torsional vibrations of rods 3268.5 Flexural (bending) vibrations of beams 330				
			(pinned-pinned configuration) 332	
		8.5.2	Case 2. One end clamped and one end free	
			(cantilever configuration) 333	
		8.5.3	Case 3. Both ends clamped (clamped-clamped	
			configuration) 334	
		8.5.4	Case 4. Both ends free (free-free configuration)	335
		8.5.5	Axial force effects on flexural vibrations 336	
		8.5.6	The effects of shear deformation and	
			rotary inertia (Timoshenko beam) 339	
			8.5.6.1 Case 1. Shear deflection alone 343	
			8.5.6.2 Case 2. Rotary inertia alone 343	
	8.6		dimensional continuous system:	
			xible membrane 344	
		8.6.1	The circular membrane with fixed edge 346	
	8.7		fferential eigenvalue problem 349	
		8.7.1	The differential eigenvalue problem:	
			Some further considerations 355	

	8.8	Bending vibrations of thin plates 361	
		8.8.1 Circular plates 364	
		8.8.2 Rectangular plates 367	
	8.9	Forced vibration and response	
		analysis: The modal approach 372	
		8.9.1 Forced response of continuous	
		systems: Some examples 378	
	8.10	Some final considerations: Alternative form	
		of FRFs and the introduction of damping 388	
	8.11	Summary and comments 392	
9	MD	OF and continuous systems: Approximate methods	395
	9.1	Introduction 395	
	9.2	The Rayleigh quotient 396	
		9.2.1 Courant-Fisher max-min and min-	
		max characterisation of eigenvalues and	
		the eigenvalue separation property 399	
		9.2.2 Systems with lumped masses: Dunkerley's formula	405
	9.3	The Rayleigh-Ritz method 406	
		9.3.1 The Rayleigh-Ritz method (and the assumed-	
		modes method) for continuous systems 410	
		9.3.2 Continuous systems: A few comments	
		on admissible and comparison functions 415	
	9.4	Summary and comments 419	
10	Expe	erimental modal analysis	421
	10.1	Introduction 421	
	10.2	.2 Experimental modal analysis:	
		Overview of the fundamentals 422	
		10.2.1 FRFs of SDOF systems 424	
		10.2.2 FRFs of MDOF systems 435	
	10.3	Modal testing procedures 444	
		10.3.1 Supporting the structure 445	
		10.3.2 Excitation systems 446	
		10.3.3 Measurement of response 449	
		10.3.4 Excitation functions 450	
	10.4	A few selected topics in experimental modal analysis 453	
		10.4.1 Characteristic phase lag theory	
		and Asher's method 454	

		10.4.2	-	out-single output test configuration:	
				surement and the presence of	
				he input and output signals 457	
			10.4.2.1	Case 1. Noise in excitation signal,	
				no noise in response signal 460	
			10.4.2.2	Case 2. No noise in the excitation	
				signal, noise in the response signal 461	
			10.4.2.2	Case 3. Noise in both excitation	
				and response signals 462	
		10.4.3	Identifica	ation of modal parameters:	
			Curve fit	ting 464	
	10.5	Summo	ary and co	mments 473	
11	Prob	ability a	and statist	tics: Preliminaries to random	
	vibra	tions			477
	11 1	Introda	iction 477	,	
				f probability 477	
	11.2			ristic considerations 479	
				igression on combinatorial analysis 481	
	11 2			,	
			-	matic formulation and some results 482	
	11.4			s and distribution functions 487	
		11.4.1		and (absolutely)	
		44.43		us random variables 488	
				imples 489	
				ion and moments of a random variable 49	12
				ristic functions 496	
	11.5		m vectors		
		11.5.1	_	distributions and	
			independ	ent random variables 501	
		11.5.2	Expectati	ion, moments and characteristic	
			functions	of random vectors 503	
		11.5.3	Two exar	nples: The multinomial and	
			the multi	variate normal distributions 508	
		11.5.4	Function	s of random vectors 511	
	11.6			nal probability 514	
		11.6.1		nal expectation 517	
	11.7			d the law of large numbers 519	
			-	ral limit theorem 521	
	11.8			probability and statistics 525	
		11 1000 1		. P. Comostie, with commonwed CEC	

Stock	nastic p	rocesses and random vibrations	527	
12.1	Introdi	ection 527		
12.2	ncept of random process 528			
		Stationary processes 532		
	12.2.2	Properties of correlation and covariance functions	534	
		Ergodic processes 536		
12.3	Basic c	alculus of random processes 540		
12.4	Spectra	l representation of random processes 544		
	12.4.1	Some properties of spectral densities 548		
	12.4.2	Narrowband and broadband processes 549		
12.5	Respon	se of linear systems to random excitation 553		
	12.5.1	SDOF system response to broadband excitation 5	58	
	12.5.2	Transient response 559		
	12.5.3	One output and more than one input 562		
	12.5.4	Multiple inputs and multiple outputs 566		
	12.5.5	Response of MDOF and continuous systems 568		
12.6 Stationary narrowband processes: A few selected topic				
	12.6.1	Threshold crossing rates 572		
	12.6.2	Peak distribution 574		
	12.6.3	Notes on fatigue damage due		
		to random excitation 577		
12.7	Summa	ary and comments 581		
Арре	endix A		585	
• •	endix B		623	
	rences		629	
Inde:			635	