"Classic! This handbook is an excellent reference for engineers and quality professionals in any field."

-Kevin W. Williams, Vice President - Quality, General Motors North America

# TAGUCHI'S Quality Engineering HANDBOOK

Genichi Taguchi
Subir Chowdhury Yuin Wu

## **Contents**

| Acknowledgments About the Authors                                          | xxix<br>xxxi |
|----------------------------------------------------------------------------|--------------|
| SECTION 1<br>THEORY                                                        |              |
| Part I<br>Genichi Taguchi's Latest Thinking                                | 3            |
| <b>1</b><br>The Second Industrial Revolution and Information<br>Technology | 5            |
| 2<br>Management for Quality Engineering                                    | 25           |
| <b>3</b><br>Quality Engineering: Strategy in Research and<br>Development   | 39           |
| 4<br>Quality Engineering: The Taguchi Method                               | 56           |
| Part II  Quality Engineering: A Historical Perspective                     | 125          |
| 5<br>Development of Quality Engineering in Japan                           | 127          |

|                                                                       | Contents |
|-----------------------------------------------------------------------|----------|
| 6<br>History of Taguchi's Quality Engineering in the United<br>States | 153      |
| Part III<br>Quality Loss Function                                     | 169      |
| <b>7</b><br>Introduction to the Quality Loss Function                 | 171      |
| 8<br>Quality Loss Function for Various Quality Characteristics        | 180      |
| 9<br>Specification Tolerancing                                        | 192      |
| <b>10</b><br>Tolerance Design                                         | 208      |
| Part IV<br>Signal-to-Noise Ratio                                      | 221      |
| 11<br>Introduction to the Signal-to-Noise Ratio                       | 223      |
| 12<br>SN Ratios for Continuous Variables                              | 239      |
| 13<br>SN Ratios for Classified Attributes                             | 290      |
| Part V Robust Engineering                                             | 311      |
| 14<br>System Design                                                   | 313      |
| 15<br>Parameter Design                                                | 318      |
| 16<br>Tolerance Design                                                | 340      |

### Contents

| 17<br>Robust Technology Development                                       | 352 |
|---------------------------------------------------------------------------|-----|
| <b>18</b><br>Robust Engineering: A Manager's Perspective                  | 377 |
| 1 <b>9</b><br>Implementation Strategies                                   | 389 |
| Part VI<br>Mahalanobis–Taguchi System (MTS)                               | 395 |
| <b>20</b><br>Mahalanobis–Taguchi System                                   | 397 |
| Part VII Software Testing and Application                                 | 423 |
| <b>21</b><br>Application of Taguchi Methods to Software System<br>Testing | 425 |
| Part VIII<br>On-Line Quality Engineering                                  | 435 |
| <b>22</b><br>Tolerancing and Quality Level                                | 437 |
| 23 Feedback Control Based on Product Characteristics                      | 454 |
| 24<br>Feedback Control of a Process Condition                             | 468 |
| 25<br>Process Diagnosis and Adjustment                                    | 474 |
| Part IX Experimental Regression                                           | 483 |
| <b>26</b> Parameter Estimation in Regression Equations                    | 485 |

|                                                                     | Contents |
|---------------------------------------------------------------------|----------|
| Part X Design of Experiments                                        | 501      |
| 27<br>Introduction to Design of Experiments                         | 503      |
| 28<br>Fundamentals of Data Analysis                                 | 506      |
| 29<br>Introduction to Analysis of Variance                          | 515      |
| 30<br>One-Way Layout                                                | 523      |
| <b>31</b> Decomposition to Components with a Unit Degree of Freedom | 528      |
| <b>32</b><br>Two-Way Layout                                         | 552      |
| <b>33</b><br>Two-Way Layout with Decomposition                      | 563      |
| <b>34</b><br>Two-Way Layout with Repetition                         | 573      |
| 35<br>Introduction to Orthogonal Arrays                             | 584      |
| 36<br>Layout of Orthogonal Arrays Using Linear Graphs               | 597      |
| 37<br>Incomplete Data                                               | 609      |
| <b>38</b><br>Youden Squares                                         | 617      |

# SECTION 2 APPLICATION (CASE STUDIES)

| Part I<br>Robust Engineering: Chemical Applications                        | 629 |
|----------------------------------------------------------------------------|-----|
| Biochemistry                                                               |     |
| Case 1 Optimization of Bean Sprouting Conditions by Parameter Design       | 631 |
| Case 2 Optimization of Small Algae Production by Parameter Design          | 637 |
| Chemical Reaction                                                          |     |
| Case 3 Optimization of Polymerization Reactions                            | 643 |
| Case 4 Evaluation of Photographic Systems Using a Dynamic Operating Window | 651 |
| Measurement                                                                |     |
| <b>Case 5</b> Application of Dynamic Optimization in Ultra Trace Analysis  | 659 |
| Case 6 Evaluation of Component Separation Using a Dynamic Operating Window | 666 |
| Case 7 Optimization of a Measuring Method for Granule Strength             | 672 |
| Case 8 A Detection Method for Thermoresistant Bacteria                     | 679 |

### Pharmacology

| Case 9 Optimization of Model Ointment Prescriptions for In Vitro Percutaneous Permeation | 686 |
|------------------------------------------------------------------------------------------|-----|
| Separation                                                                               |     |
| Case 10 Use of a Dynamic Operating Window for Herbal Medicine Granulation                | 695 |
| Case 11 Particle-Size Adjustment in a Fine Grinding Process for a Developer              | 705 |
| Part II Robust Engineering: Electrical Applications                                      | 715 |
| Circuits                                                                                 |     |
| Case 12 Design for Amplifier Stabilization                                               | 717 |
| Case 13 Parameter Design of Ceramic Oscillation Circuits                                 | 732 |
| Case 14 Evaluation Method of Electric Waveforms by Momentary Values                      | 735 |
| Case 15 Robust Design for Frequency-Modulation Circuits                                  | 741 |
| Electronic Devices                                                                       |     |
| Case 16 Optimization of Blow-off Charge Measurement Systems                              | 746 |
| Case 17 Evaluation of the Generic Function of Film Capacitors                            | 753 |

| Case 18 Parameter Design of Fine-Line Patterning for IC Fabrication                         | 758 |
|---------------------------------------------------------------------------------------------|-----|
| Case 19 Minimizing Variation in Pot Core Transformer Processing                             | 764 |
| Case 20 Optimization of the Back Contact of Power MOSFETs                                   | 771 |
| Electrophoto                                                                                |     |
| Case 21 Development of High-Quality Developers for Electrophotography                       | 780 |
| Case 22 Functional Evaluation of an Electrophotographic Process                             | 788 |
| Part III Robust Engineering: Mechanical Applications                                        | 793 |
| Biomechanical                                                                               |     |
| Case 23 Biomechanical Comparison of Flexor Tendon Repairs                                   | 795 |
| Machining                                                                                   |     |
| Case 24 Optimization of Machining Conditions by Electrical Power                            | 806 |
| Case 25 Development of Machining Technology for High- Performance Steel by Transformability | 819 |
| Case 26 Transformability of Plastic Injection-Molded Gear                                   | 827 |

|                                                                                        | Contents |
|----------------------------------------------------------------------------------------|----------|
| Material Design                                                                        |          |
| Case 27 Optimization of a Felt-Resist Paste Formula Used in Partial Felting            | 836      |
| Case 28 Development of Friction Material for Automatic Transmissions                   | 841      |
| Case 29 Parameter Design for a Foundry Process Using Green Sand                        | 848      |
| Case 30 Development of Functional Material by Plasma Spraying                          | 852      |
| Material Strength                                                                      |          |
| Case 31 Optimization of Two-Piece Gear Brazing Conditions                              | 858      |
| Case 32 Optimization of Resistance Welding Conditions for Electronic Components        | 863      |
| Case 33 Tile Manufacturing Using Industrial Waste                                      | 869      |
| Measurement                                                                            |          |
| Case 34 Development of an Electrophotographic Toner Charging Function Measuring System | 875      |
| Case 35 Clear Vision by Robust Design                                                  | 882      |

### Processing

| Case 36 Optimization of Adhesion Condition of Resin Board and Copper Plate           | 890 |
|--------------------------------------------------------------------------------------|-----|
| Case 37 Optimization of a Wave Soldering Process                                     | 895 |
| Case 38 Optimization of Casting Conditions for Camshafts by Simulation               | 900 |
| Case 39 Optimization of Photoresist Profile Using Simulation                         | 904 |
| Case 40 Optimization of a Deep-Drawing Process                                       | 911 |
| Case 41 Robust Technology Development of an Encapsulation Process                    | 916 |
| Case 42 Gas-Arc Stud Weld Process Parameter Optimization Using Robust Design         | 926 |
| Case 43 Optimization of Molding Conditions of Thick-Walled Products                  | 940 |
| Case 44 Quality Improvement of an Electrodeposited Process for Magnet Production     | 945 |
| Case 45 Optimization of an Electrical Encapsulation Process through Parameter Design | 950 |
| Case 46 Development of Plastic Injection Molding Technology by Transformability      | 957 |

### **Product Development**

| Case 47 Stability Design of Shutter Mechanisms of Single-Use Cameras by Simulation | 965  |
|------------------------------------------------------------------------------------|------|
| Case 48 Optimization of a Clutch Disk Torsional Damping System Design              | 973  |
| Case 49 Direct-Injection Diesel Injector Optimization                              | 984  |
| Case 50 Optimization of Disk Blade Mobile Cutters                                  | 1005 |
| Case 51 D-VHS Tape Travel Stability                                                | 1011 |
| Case 52 Functionality Evaluation of Spindles                                       | 1018 |
| Case 53<br>Improving Minivan Rear Window Latching                                  | 1025 |
| Case 54 Linear Proportional Purge Solenoids                                        | 1032 |
| Case 55 Optimization of a Linear Actuator Using Simulation                         | 1050 |
| Case 56 Functionality Evaluation of Articulated Robots                             | 1059 |
| Case 57 New Ultraminiature KMS Tact Switch Optimization                            | 1069 |
| Case 58 Optimization of an Electrical Connector Insulator Contact Housing          | 1084 |

| Case 59 Airflow Noise Reduction of Intercoolers                                | 1100 |
|--------------------------------------------------------------------------------|------|
| Case 60 Reduction of Boosting Force Variation of Brake Boosters                | 1106 |
| Case 61 Reduction of Chattering Noise in Series 47 Feeder Valves               | 1112 |
| Case 62 Optimal Design for a Small DC Motor                                    | 1122 |
| Case 63 Steering System On-Center Robustness                                   | 1128 |
| Case 64 Improvement in the Taste of Omelets                                    | 1141 |
| Case 65 Wiper System Chatter Reduction                                         | 1148 |
| Other                                                                          |      |
| Case 66 Fabrication Line Capacity Planning Using a Robust Design Dynamic Model | 1157 |
| Part IV<br>Mahalanobis-Taguchi System (MTS)                                    | 1169 |
| Human Performance                                                              |      |
| Case 67 Prediction of Programming Ability from a Questionnaire Using the MTS   | 1171 |
| Case 68 Technique for the Evaluation of Programming Ability Based on the MTS   | 1178 |

### Inspection

| Case 69 Application of Mahalanobis Distance for the Automatic Inspection of Solder Joints                          | 1189 |
|--------------------------------------------------------------------------------------------------------------------|------|
| Case 70 Application of the MTS to Thermal Ink Jet Image Quality Inspection                                         | 1196 |
| Case 71 Detector Switch Characterization Using the MTS                                                             | 1208 |
| Case 72 Exhaust Sensor Output Characterization Using the MTS                                                       | 1220 |
| Case 73 Defect Detection Using the MTS                                                                             | 1233 |
| Medical Diagnosis                                                                                                  |      |
| Case 74 Application of Mahalanobis Distance to the Measurement of Drug Efficacy                                    | 1238 |
| Case 75 Use of Mahalanobis Distance in Medical Diagnosis                                                           | 1244 |
| Case 76 Prediction of Urinary Continence Recovery among Patients with Brain Disease Using the Mahalanobis Distance | 1258 |
| Case 77 Mahalanobis Distance Application for Health Examination and Treatment of Missing Data                      | 1267 |

| Case 78 Forecasting Future Health from Existing Medical Examination Results Using the MTS | 1277 |
|-------------------------------------------------------------------------------------------|------|
| Product                                                                                   |      |
| Case 79 Character Recognition Using the Mahalanobis Distance                              | 1288 |
| Case 80 Printed Letter Inspection Technique Using the MTS                                 | 1293 |
| Part V<br>Software Testing and Application                                                | 1299 |
| Algorithms                                                                                |      |
| Case 81 Optimization of a Diesel Engine Software Control Strategy                         | 1301 |
| Case 82 Optimizing Video Compression                                                      | 1310 |
| Computer Systems                                                                          |      |
| Case 83 Robust Optimization of a Real-Time Operating System Using Parameter Design        | 1324 |
| Software                                                                                  |      |
| Case 84 Evaluation of Capability and Error in Programming                                 | 1335 |
| Case 85 Evaluation of Programmer Ability in Software Production                           | 1343 |
| Case 86 Robust Testing of Electronic Warfare Systems                                      | 1351 |

|                                                                                                                            | Contents |
|----------------------------------------------------------------------------------------------------------------------------|----------|
| Case 87 Streamlining of Debugging Software Using an Orthogonal Array                                                       | 1360     |
| Part VI<br>On-Line Quality Engineering                                                                                     | 1365     |
| On-Line                                                                                                                    |          |
| Case 88 Application of On-Line Quality Engineering to the Automobile Manufacturing Process                                 | 1367     |
| Case 89 Design of Preventive Maintenance of a Bucket Elevator through Simultaneous Use of Periodic Maintenance and Checkup | 1376     |
| Case 90 Feedback Control by Quality Characteristics                                                                        | 1383     |
| Case 91 Control of Mechanical Component Parts in a Manufacturing Process                                                   | 1389     |
| Case 92 Semiconductor Rectifier Manufacturing by On-Line Quality Engineering                                               | 1395     |
| Part VII<br>Miscellaneous                                                                                                  | 1399     |
| Miscellaneous                                                                                                              |          |
| Case 93 Estimation of Working Hours in Software Development                                                                | 1401     |
| Case 94 Applications of Linear and Nonlinear Regression Equations for Engineering                                          | 1406     |

# SECTION 3 TAGUCHI'S METHODS VERSUS OTHER QUALITY PHILOSOPHIES

| 39<br>Quality Management in Japan                                                 | 1423                 |
|-----------------------------------------------------------------------------------|----------------------|
| <b>40</b><br>Deming and Taguchi's Quality Engineering                             | 1442                 |
| <b>41</b><br>Enhancing Robust Design with the Aid of TRIZ and<br>Axiomatic Design | 1449                 |
| <b>42</b><br>Testing and Quality Engineering                                      | 1470                 |
| 43 Total Product Development and Taguchi's Quality Engineering                    | 1478                 |
| <b>44</b><br>Role of Taguchi Methods in Design for Six Sigma                      | 1492                 |
| APPENDIXES                                                                        |                      |
| <b>A</b><br>Orthogonal Arrays and Linear Graphs: Tools for Quality<br>Engineering | 1525                 |
| <b>B</b><br>Equations for On-Line Process Control                                 | 1598                 |
| C<br>Orthogonal Arrays and Linear Graphs for Chapter 38                           | 1602                 |
| Glossary<br>Bibliography<br>Index                                                 | 1618<br>1625<br>1629 |