

Robert H. Crawford

Contents

List	of f	igures	хi			
List	of t	ables	xiii			
Fore	ewo	rd	xvii			
Pref			xix			
Ack	now	rledgements	xxi			
Abb	revi	ations	xxiii			
1	Glo	bal environmental issues and the built environment	1			
		1.1 Global warming and climate change				
		Pollution	6			
	1.3	Resource depletion	8			
		Production and disposal of waste	10			
	1.5	The built environment	14			
		1.5.1 The built environment life cycle and its related				
		environmental impacts	15			
		1.5.1.1 Raw material extraction	16			
		1.5.1.2 Manufacturing	16			
		1.5.1.3 Construction	18			
		1.5.1.4 Operation and maintenance	18			
		1.5.1.5 End-of-life (demolition, disposal, reuse and				
		recycling)	21			
	1.6	Summary	22			
2	Towards a sustainable built environment					
	2.1 Minimizing the environmental impact of the built					
		environment	24			
	2.2 Designing for the environment: strategies for a sustainab					
		environment	24			
		2.2.1 Resource efficiency	26			
		2.2.2 Minimizing non-renewable resource consumption	26			
		2.2.3 Minimizing pollution	27			
		2.2.4 Designing for disassembly	28			
		2.2.5 Minimizing solid waste production	28			
		2.2.6 Designing for recyclability	29			

vi Contents

		2.2.7 Designing for durability	30
		2.2.8 Designing for adaptive reuse	30
	2.3	An integrated approach to environmental design	31
		Environmental assessment: an essential component	
		of environmental design	31
	2.5	Origins and historical perspective of environmental	
		assessment	32
	2.6	Environmental assessment in the twenty-first century	34
		Approaches to environmental assessment	35
		2.7.1 Assessment tools	35
		2.7.2 Simulation tools	35
		2.7.3 Checklists and guidelines	36
	2.8	Summary	36
3	Life	e cycle assessment	38
_		What is life cycle assessment?	38
		3.1.1 Life cycle assessment framework	39
		3.1.2 An iterative approach	39
	3.2	Types of life cycle assessment	40
		3.2.1 Baseline life cycle assessment	41
		3.2.2 Comparative life cycle assessment	41
		3.2.3 Streamlined life cycle assessment	42
	3.3	The four phases of life cycle assessment	42
		3.3.1 Goal and scope definition	42
		3.3.1.1 Goals	43
		3.3.1.2 Scope	43
		3.3.1.3 Functional unit	44
		3.3.1.4 System boundaries	44
		3.3.1.5 Data quality and scope	46
		3.3.2 Life cycle inventory analysis	46
		3.3.2.1 Data types	47
		3.3.2.2 Quantifying inputs and outputs	47
		3.3.3 Life cycle impact assessment	54
		3.3.3.1 Selection and definition of impact categories	55
		3.3.3.2 Classification	56
		3.3.3.3 Characterization	57
		3.3.3.4 Normalization, grouping and weighting	57
		3.3.3.5 Data quality analysis	58
		3.3.4 Interpretation	58
		3.3.4.1 Identification of significant issues	59
		3.3.4.2 Evaluation of results – completeness, consistency	
		and sensitivity	59
		3.3.4.3 Conclusions, limitations and recommendations	60
	3.4	4 How can life cycle assessment be used?	60
		3.4.1 Environmental improvement	61
		3,4.2 Strategic planning	62

		Contents	vii
		3.4.3 Public policy making	62
		3.4.4 Marketing and eco-labelling	63
	3.5	International LCA standard – ISO 14040 series	64
	3.6	Limitations of life cycle assessment	65
		3.6.1 Lack of knowledge and awareness	65
		3.6.2 Methodological gaps	66
		3.6.3 Geographic issues	67
		3.6.4 Availability and quality of life cycle inventory data	67
		3.6.5 Time and cost-intensive	69
		3.6.6 Interpretation of results	70
	3.7	Summary	70
4	Qua	antifying environmental impacts of the built environment	72
	4.1	Life cycle thinking in the built environment	72
		4.1.1 Why is a life cycle approach important?	73
	4.2	Using life cycle assessment in the built environment	75
		4.2.1 Supporting decisions across the life cycle	76
		4.2.2 A streamlined life cycle assessment approach	77
	4.3	Goal and scope definition	78
		4.3.1 Goals	78
		4.3.2 Scope	79
		4.3.2.1 Functional unit	79
		4.3.2.2 System boundary	80
	4.4	Life cycle inventory analysis	81
		4.4.1 Quantifying inputs and outputs	81
		4.4.2 Compiling a life cycle inventory using input-output-based	00
		hybrid analysis 4.4.2.1 Input-output analysis	82
		4.4.2.2 Process data collection	82 84
		4.4.2.3 Integrating process and input-output data	85
		4.4.2.4 Using material coefficients	91
		4.4.2.5 Avoiding sideways truncation of the system	וכ
		boundary	92
		4.4.3 Comparison of life cycle inventory approaches	94
		4.4.4 Reuse and recycling	95
		4.4.4.1 A credit for recyclability or reuse potential?	97
		4.4.5 Life cycle inventory studies	98
	4.5	Life cycle impact assessment and interpretation	98
		4.5.1 Selection of impact categories	99
		4.5.2 Classification	99
		4.5.3 Characterization	99
		4.5.4 Normalization, grouping and weighting	101
		4.5.5 Study limitations	101
		4.5.6 Interpretation	102
		4.5.6.1 Evaluation of results	103
		4.5.6.2 Conclusions, limitations and recommendations	104

viii Contents

		4.5.7 Wh	nat to	do with the results?	106
	4.6	Life cycle	e asses	ssment tools for the built environment	106
		4.6.1 Bu	ilt-en	vironment-specific life cycle assessment tools	107
		4.6	5.1.1	ATHENA® Impact Estimator for Buildings by the	
			,	Athena Sustainable Materials Institute	108
		4.6	i.1.2 I	Building for Environmental and Economic	
			9	Sustainability (BEES) tool by NIST	109
		4.6	.1.3	ntegrated design tools	111
		4.6.2 Ge	neral	life cycle assessment tools	111
		4.6.3 Lin	nitatio	ons of existing life cycle assessment tools	112
	4.7	Summar	y		113
5	Cas	e studies			115
	5.1	Building			116
				dy 1: Selecting a building structural system –	
				reinforced concrete?	116
		5.1	.1.1	ife cycle inventory of steel and concrete-framed	
			ŀ	ouilding construction	119
				nterpretation – evaluation of results	121
				dy 2: Commercial office building	122
		5.1	.2.1 l	ife cycle inventory of commercial office building	125
		5.1	.2.2	mpact assessment – life cycle greenhouse gas	
				emissions **	127
				nterpretation ~ evaluation of results	128
				dy 3: Construction assemblies	129
		5.1		ife cycle inventory of assembly construction,	
			1	maintenance and refurbishment	132
		5.1	.3.2 I	mpact assessment – life cycle greenhouse	
			g	gas emissions	136
				nterpretation ~ evaluation of results	136
	5.2	-		astructure case studies	138
				dy 4: Railway sleepers	138
		5.2		ife cycle inventory of reinforced concrete	
				and timber sleeper production	141
				mpact assessment	142
				nterpretation – evaluation of results	143
				dy 5: Road construction	144
		5.2		ife cycle inventory of road construction and	
				naintenance	145
				nterpretation – evaluation of results	148
	5.3			ergy technology case studies	148
		dy 6: Residential building integrated			
				Itaic (PV) system	149
		5.3		ife cycle inventory of photovoltaic system	
				production and operation	151

			5.3.1.2	Impact assessment – net life cycle greenhouse	
				gas emissions avoided	153
				Interpretation – evaluation of results	154
		5.3.2		udy 7: Wind turbine	155
			5.3.2.1	Life cycle inventory of wind turbine	
				construction and operation	158
			5.3.2.2	Impact assessment – net life cycle greenhouse	
				gas emissions avoided	161
				Interpretation – evaluation of results	162
	5.4	Sumn	nary		163
				r reducing the environmental impact of the built	
		ironm			164
1	6.1			vironmental impacts of the built environment	165
		6.1.1		s to optimizing environmental outcomes	166
				Market demands and split incentives	166
				Accessibility to consistent environmental data	167
				Lack of regulation	167
		6.1.2		an designers do?	167
				Education and training	168
				Maximize resource efficiency	169
				Understand the broad range of potential impacts	169
				Optimize opportunities through design	170
				an owners and occupants do?	170
		6.1.4		an governments do?	172
				Incentives	172
				Penalties as incentives	172
			6.1.4.3	Implications of a penalty-based system for	
				improving the environmental performance of	
				the built environment	173
1	6.2	Wher	e to fro	m here?	173
		6.2.1	Implica	tions of the limitations of current assessment	
	techniques for achieving optimal outcomes in the bui				
			enviror		174
				development of life cycle assessment	175
		6.2.3	Integra	tion of life cycle assessment into industry	176
	6.3	Concl	lusion		177
Арр	end	ix A		•	179
Арр	end	ix B			200
	Glossary 22				
	•				225
Refe	References 2:				226
Inde	х				237