WILEY SERIES IN COMPUTATIONAL STATISTICS

Stéphane Tufféry

DATA MINING AND STATISTICS FOR DECISION MAKING

Contents

Preface					
Fo	rewore	d	xxi		
Fo	reword	d from the French language edition	xxiii		
Lis	st of tr	ademarks	XXV		
1	Overv	view of data mining	1		
	1.1	What is data mining?	1		
	1.2	What is data mining used for?	4		
		1.2.1 Data mining in different sectors	4		
		1.2.2 Data mining in different applications	8		
	1.3	Data mining and statistics	11		
	1.4	Data mining and information technology	12		
	1.5	Data mining and protection of personal data	16		
	1.6	Implementation of data mining	23		
2	The development of a data mining study				
	2.1	Defining the aims	26		
	2.2	Listing the existing data	26		
	2.3	Collecting the data	27		
	2.4	Exploring and preparing the data	30		
	2.5	Population segmentation	33		
	2.6	Drawing up and validating predictive models	35		
	2.7	Synthesizing predictive models of different segments	36		
	2.8	Iteration of the preceding steps	37		
	2.9	Deploying the models	37		
	2.10	Training the model users	38		
	2.11	Monitoring the models	38		
	2.12	Enriching the models	40		
	2.13	Remarks	41		
	2.14	Life cycle of a model	41		
	2.15	Costs of a pilot project	41		
3	Data	exploration and preparation	43		
	3.1	The different types of data	43		
	3.2	Examining the distribution of variables	44		
	3.3	Detection of rare or missing values	45		
	3.4	Detection of aberrant values	49		
	3.5	Detection of extreme values	52		

viii CONTENTS

	3.6	rests of	normanty	34
	3.7	Homoso	cedasticity and heteroscedasticity	58
	3.8		on of the most discriminating variables	59
		3.8.1	Qualitative, discrete or binned independent variables	60
		3.8.2	Continuous independent variables	62
		3.8.3	Details of single-factor non-parametric tests	65
		3.8.4	ODS and automated selection of discriminating	
			variables	70
	3.9	Transfo	rmation of variables	73
	3.10	Choosir	ng ranges of values of binned variables	74
	3.11	Creating	g new variables	81
	3.12	Detection	ng interactions	82
	3.13	Automa	atic variable selection	8.5
	3.14	Detection	on of collinearity	80
	3.15	Samplin	ng	89
		3.15.1	Using sampling	89
		3.15.2	Random sampling methods	90
4	Using	commerc	cial data	9.
	4.1	Data us	ed in commercial applications	93
		4.1.1	Data on transactions and RFM data	93
		4.1.2	Data on products and contracts	94
		4.1.3	Lifetimes	94
		4.1.4	Data on channels	90
		4.1.5	Relational, attitudinal and psychographic data	90
		4.1.6	Sociodemographic data	9′
		4.1.7	When data are unavailable	9′
		4.1.8	Technical data	9
	4.2	Special	data	9
		4.2.1	Geodemographic data	9
		4.2.2	Profitability	10:
	4.3	Data us	sed by business sector	100
		4.3.1	Data used in banking	10
		4.3.2	Data used in insurance	10
		4.3.3	Data used in telephony	10
		4.3.4	Data used in mail order	10
5			data mining software	11
	5.1	• 4	of data mining and statistical software	11
	5.2		al characteristics of the software	11-
		5.2.1	Points of comparison	11
		5.2.2	Methods implemented	11.
		5,2.3	Data preparation functions	11
		5.2.4	Other functions	11
	_	5.2.5	Technical characteristics	11
	5.3		ain software packages	11
		5.3.1	Overview	11

				CONTENTS	ix
		5.3.2	IBM SPSS		119
		5.3.3	SAS		122
		5.3.4	R		124
		5.3.5	Some elements of the R language		133
	5.4		ison of R, SAS and IBM SPSS		136
	5.5		reduce processing time		164
6	An out	line of da	ata mining methods		167
	6.1		cation of the methods		167
	6.2	Compar	ison of the methods		174
7	Factor	analysis			175
	7.1	-	al component analysis		175
		7.1.1	Introduction		175
		7.1.2	Representation of variables		181
		7.1.3	Representation of individuals		185
		7.1.4	Use of PCA		187
		7.1.5	Choosing the number of factor axes		189
		7.1.6	Summary		192
	7.2	Variants	of principal component analysis		192
		7.2.1	PCA with rotation		192
		7.2.2			193
		7.2.3	PCA on qualitative variables		194
	7.3	-	ondence analysis		194
		7.3.1	Introduction		194
		7.3.2	Implementing CA with IBM SPSS Statistics		197
	7.4	_	e correspondence analysis		201
		7.4.1	Introduction		201
		7.4.2			205
		7.4.3	Implementing MCA and CA with SAS		207
8		network			217
	8.1		information on neural networks		217
	8.2		re of a neural network		220
	8.3		ng the learning sample		221
	8.4		mpirical rules for network design		222
	8.5		ormalization		223
		8.5.1	Continuous variables		223
		8.5.2	Discrete variables		223
	0.6	8.5.3	Qualitative variables		224
	8.6		g algorithms		224
	8.7		in neural networks		224
		8.7.1	The multilayer perceptron		225 227
		8.7.2	The Kehenen network		231
		8.7.3	The Kohonen network		2J1

x CONTENTS

9	Cluster	' analysis		23: 23:	
	9.1	Definition of clustering			
	9.2	Applica	tions of clustering	236	
	9.3	Comple	xity of clustering	236	
	9.4	Clusteri	ng structures	237	
		9.4.1	Structure of the data to be clustered	237	
		9.4.2	Structure of the resulting clusters	237	
	9.5	Some m	nethodological considerations	238	
		9.5.1	The optimum number of clusters	238	
		9.5.2	The use of certain types of variables	238	
		9.5.3	The use of illustrative variables	239	
		9.5.4	Evaluating the quality of clustering	239	
		9.5.5	Interpreting the resulting clusters	240	
		9.5.6	The criteria for correct clustering	242	
	9.6	Compar	rison of factor analysis and clustering	242	
	9.7	Within-	cluster and between-cluster sum of squares	243	
	9.8	Measure	ements of clustering quality	244	
		9.8.1	All types of clustering	245	
		9.8.2	Agglomerative hierarchical clustering	246	
	9.9	Partition	ning methods	24	
		9.9.1	The moving centres method	24	
		9.9.2	k-means and dynamic clouds	248	
		9.9.3	Processing qualitative data	249	
		9.9.4	k-medoids and their variants	249	
		9.9.5	Advantages of the partitioning methods	250	
		9.9.6	Disadvantages of the partitioning methods	25	
		9.9.7	Sensitivity to the choice of initial centres	252	
	9.10	Agglon	nerative hierarchical clustering	25.	
		9.10.1	Introduction	25:	
		9.10.2	The main distances used	254	
		9.10.3	Density estimation methods	25	
		9.10.4	Advantages of agglomerative hierarchical clustering	259	
		9.10.5	Disadvantages of agglomerative hierarchical clustering	26	
	9.11	Hybrid	clustering methods	26	
		9.11.1	Introduction	26	
		9.11.2	Illustration using SAS Software	26	
	9.12	Neural	clustering	27:	
		9.12.1	Advantages	27	
		9.12.2	Disadvantages	27:	
	9.13		ing by similarity aggregation	27:	
		9.13.1	Principle of relational analysis	27.	
		9.13.2	Implementing clustering by similarity aggregation	27	
		9.13.3	Example of use of the R amap package	27.	
		9.13.4	Advantages of clustering by similarity aggregation	27	
		9.13.5	Disadvantages of clustering by similarity aggregation	27	
	9.14		ing of numeric variables	27	
	9.15	Overvie	ew of clustering methods	28	

			CONTENTS	xi
10	Assoc	iation ana	lysis	287
10	10.1	Principl		287
	10.2		axonomy	291
	10.3	Using s	upplementary variables	292
	10.4	Applica		292
	10.5	Exampl		294
11	Classi	fication a	nd prediction methods	301
	11.1	Introduc	etion	301
	11.2	Inductiv	ve and transductive methods	302
	11.3	Overvie	ew of classification and prediction methods	304
		11.3.1	The qualities expected from a classification and prediction method	304
		11.3.2		305
		11.3.2	· · · · · · · · · · · · · · · · · · ·	308
		11.3.3		310
	11.4		cation by decision tree	313
	11.4	11.4.1	Principle of the decision trees	313
		11.4.1	7	313
		11.4.2		316
		11.4.3		510
		11.4.4	the tree	318
		11.4.5		319
		11.4.6		320
		11.4.7	•	321
		11.4.8	Advantages of decision trees	327
		11.4.9	Disadvantages of decision trees	328
	11.5		ion by decision tree	330
	11.6		ication by discriminant analysis	332
	11.0	11.6.1	The problem	332
		11.6.2	Geometric descriptive discriminant analysis (discriminant	
		11.0.2	factor analysis)	333
		11.6.3	Geometric predictive discriminant analysis	338
		11.6.4	• · · · · · · · · · · · · · · · · · · ·	342
		11.6.5	Measurements of the quality of the model	345
		11.6.6	Syntax of discriminant analysis in SAS	350
		11.6.7	Discriminant analysis on qualitative variables	
		11.0.7	(DISQUAL Method)	352
		11.6.8	Advantages of discriminant analysis	354
		11.6.9	Disadvantages of discriminant analysis	354
	11.7		ion by linear regression	355
	11.7	11.7.1	Simple linear regression	356
		11.7.2	Multiple linear regression and regularized regression	359
		11.7.2	Tests in linear regression	365
		11.7.4	-	37
		11.7.5		37:
		11.7.6		37′

xii

	11.7.7	Further details of the SAS linear regression syntax	383
	11.7.7	Further details of the SAS linear regression syntax Problems of collinearity in linear regression: an example	363
	11.7.0	using R	387
	11.7.9	Problems of collinearity in linear regression:	301
	11.,.,	diagnosis and solutions	394
	11.7.10	PLS regression	397
	11.7.11	Handling regularized regression with SAS and R	400
	11.7.12	Robust regression	430
	11.7.13	The general linear model	434
11.8	Classific	ation by logistic regression	437
	11.8.1	Principles of binary logistic regression	437
	11.8.2	Logit, probit and log-log logistic regressions	441
	11.8.3	Odds ratios	443
	11.8.4	Illustration of division into categories	445
	11.8.5	Estimating the parameters	446
	11.8.6	Deviance and quality measurement in a model	449
	11.8.7	Complete separation in logistic regression	453
	11.8.8	Statistical tests in logistic regression	454
	11.8.9	Effect of division into categories and choice	4=0
	11010	of the reference category	458
	11.8.10	Effect of collinearity	459
	11.8.11	The effect of sampling on <i>logit</i> regression	460
	11.8.12 11.8.13	The syntax of logistic regression in SAS Software	461 463
	11.8.13	An example of modelling by logistic regression Logistic regression with R	403
	11.8.15	Advantages of logistic regression	477
	11.8.16	Advantages of the logit model compared with probit	478
	11.8.17	Disadvantages of logistic regression	478
11.9		ments in logistic regression	479
11.5	11.9.1	Logistic regression on individuals with different weights	479
	11.9.2	Logistic regression with correlated data	479
	11.9.3	Ordinal logistic regression	482
	11.9.4	Multinomial logistic regression	482
	11.9.5	PLS logistic regression	483
	11.9.6	The generalized linear model	484
	11.9.7	Poisson regression	487
	11.9.8	The generalized additive model	491
11.10	Bayesiar	n methods	492
	11.10.1	The naive Bayesian classifier	492
	11.10.2	Bayesian networks	497
11.11		ation and prediction by neural networks	499
	11.11.1	Advantages of neural networks	499
	11.11.2	Disadvantages of neural networks	500
11.12		ation by support vector machines	501
	11.12.1	Introduction to SVMs	501
	11.12.2	Example	506
	11.12.3	Advantages of SVMs	508
	11.12.4	Disadvantages of SVMs	508

			CONTENT	S xiii
	11.13	Predictio	on by genetic algorithms	510
	11.75		Random generation of initial rules	511
			Selecting the best rules	512
			Generating new rules	512
		11.13.4		513
			Applications of genetic algorithms	513
			Disadvantages of genetic algorithms	514
	11.14		ng the performance of a predictive model	514
	11.15		pping and ensemble methods	516
		11.15.1	1. 0	516
		11.15.2		518
		11.15.3		521
		11.15.4		528
		11.15.5		532
	11.16		lassification and prediction methods	534
		11.16.1		534
		11.16.2	-	537
		11.16.3	Reject inference	539
		11.16.4	3	540
		11,16.5	The ROC curve, the lift curve and the Gini index	542
		11.16.6	The classification table of a model	551
		11.16.7	The validation phase of a model	553
		11.16.8	The application phase of a model	553
12	An an	olication o	of data mining: scoring	555
	12.1		Ferent types of score	555
	12.2		ropensity scores and risk scores	556
	12.3	Method		558
		12.3.1	Determining the objectives	558
		12.3.2		559
		12.3.3		559
		12.3.4		561
		12.3.5		561
		12.3.6		562
		12.3.7	Monitoring the available tools	562
	12.4		enting a strategic score	562
	12.5		enting an operational score	563
	12.6		solutions used in a business	564
		12.6.1	In-house or outsourced?	564
		12.6.2	Generic or personalized score	567
		12.6.3	Summary of the possible solutions	567
	12.7		mple of credit scoring (data preparation)	567
	12.8		mple of credit scoring (modelling by logistic regression)	594
	12.9	An exa	mple of credit scoring (modelling by DISQUAL discriminant	
		analysis		604
	12.10		history of credit scoring	615
	Refer		• •	616

xiv CONTENTS

13	ractor	is for success in a data mining project	017
	13.1	The subject	617
	13.2	The people	618
	13.3	The data	618
	13.4	The IT systems	619
	13.5	The business culture	620
	13.6	Data mining: eight common misconceptions	621
		13.6.1 No <i>a priori</i> knowledge is needed	621
		13.6.2 No specialist staff are needed	621
		13.6.3 No statisticians are needed ('you can just	press a button') 622
		13.6.4 Data mining will reveal unbelievable wor	nders 622
		13.6.5 Data mining is revolutionary	623
		13.6.6 You must use all the available data	623
		13.6.7 You must always sample	623
		13.6.8 You must never sample	623
	13.7	Return on investment	624
14	Text r	mining	627
	14.1	Definition of text mining	627
	14.2	Text sources used	629
	14.3	Using text mining	629
	14.4	Information retrieval	630
		14.4.1 Linguistic analysis	630
		14.4.2 Application of statistics and data mining	633
		14.4.3 Suitable methods	633
	14.5	Information extraction	635
		14.5.1 Principles of information extraction	635
		14.5.2 Example of application: transcription of t	business
		interviews	635
	14.6	Multi-type data mining	636
15	Web 1	mining	637
	15.1	The aims of web mining	637
	15.2	Global analyses	638
		15.2.1 What can they be used for?	638
		15.2.2 The structure of the log file	638
		15.2.3 Using the log file	639
	15.3	Individual analyses	641
	15.4	Personal analysis	642
Аp	pendix	A Elements of statistics	645
	A. 1	A brief history	645
		A.1.1 A few dates	645
		A.1.2 From statisticsto data mining	645
	A.2	Elements of statistics	648
		Δ 2.1 Statistical characteristics	648

CONTENTS	xv

685

	A.2.2	Box and whisker plot	649
	A.2.3	Hypothesis testing	649
	A.2.4	Asymptotic, exact, parametric and non-parametric tests	652
	A.2.5	Confidence interval for a mean: student's t test	652
	A.2.6	Confidence interval of a frequency (or proportion)	654
	A.2.7	The relationship between two continuous variables:	
		the linear correlation coefficient	656
	A.2.8	The relationship between two numeric or ordinal variables:	
		Spearman's rank correlation coefficient and Kendall's tau	657
	A.2.9	The relationship between n sets of several continuous	
		or binary variables: canonical correlation analysis	658
	A.2.10	The relationship between two nominal variables:	
		the χ^2 test	659
	A.2.11	Example of use of the χ^2 test	660
	A.2.12	The relationship between two nominal variables: Cramér's	
		coefficient	661
	A.2.13	The relationship between a nominal variable	
		and a numeric variable: the variance test	
		(one-way ANOVA test)	662
	A.2.14	The cox semi-parametric survival model	664
A.3	Statistic	· ·	665
	A.3.1	Table of the standard normal distribution	665
	A.3.2	Table of student's t distribution	665
	A.3.3	Chi-Square table	666
	A.3.4	Table of the Fisher–Snedecor distribution at the 0.05	
		significance level	667
	A.3.5	Table of the Fisher–Snedecor distribution at the 0.10	
		significance level	673
Appendix E	3 Furthe	er reading	675
B.1		s and data analysis	675
B.2		ning and statistical learning	678
B.3	Text min		680
B.4	Web min	-	680
B.5	R softwa		680
B.6	SAS sof		681
B.7		SS software	682
B.8	Website		682
2.0		-	

Index