
Computational Electromagnetics for RF and Microwave Engineering Second Edition

David B. Davidson

Contents

Preface to the second edition

	Prefac	ce to the first edition	xvii
	_	owledgements	xxi
	To the	reader	xxiii
	List of	fnotation	xxiv
1	An ove	erview of computational electromagnetics for RF and microwave	
	applic	eations	1
	1.1	Introduction	1
	1.2	Full-waye CEM techniques	3
	1.3	The method of moments (MoM)	8
	1.4	The finite difference time domain (FDTD) method	10
	1.5	The finite element method (FEM)	13
	1.6	Other methods	16
		1.6.1 Transmission line matrix (TLM) method	16
		1.6.2 The method of lines (MoL)	17
		1.6.3 The generalized multipole technique (GMT)	17
	1.7	The CEM modelling process	17
	1.8	Verification and validation	19
		1.8.1 An example: a frequency selective surface	20
	1.9	Convergence and extrapolation	23
	1.10	Extending the limits of full-wave CEM methods	24
	1.11	CEM: the future	25
	1.12	A "road map" of this book	28
		References	29
2	The fi	inite difference time domain method: a one-dimensional introduction	32
		B. Davidson and James T. Aberle	
	2.1	Introduction	32
	2.2	An overview of finite differences	33
		2.2.1 Partial differential equations	33
		2.2.2 The basic solution procedure	34
		2.2.3 Approximating derivatives using finite differences	34

page xv

2.3 A very brief history of the FDTD

	2.3	A very brief history of the FDTD	36
	2.4	A one-dimensional introduction to the FDTD	37
		2.4.1 A one-dimensional model problem: a lossless transmission line	37
		2.4.2 FDTD solution of the one-dimensional lossless transmission line	
		problem	40
		2.4.3 Accuracy, convergence, consistency and stability of the method	46
	2.5	Obtaining wideband data using the FDTD	52
		2.5.1 The Gaussian pulse	52
		2.5.2 The Gaussian derivative pulse	54
		2.5.3 A polynomial pulse	54
		2.5.4 The 1D transmission line revisited from a wideband perspective	57
		2.5.5 Estimating the Fourier transform	60
		2.5.6 Simulation using Gaussian and Gaussian derivative pulses	62
	2.6	Numerical dispersion in FDTD simulations	64
		2.6.1 Dispersion	64
		2.6.2 Derivation of the dispersion equation	66
		2.6.3 Some closing comments on dispersion in FDTD grids	67
	2.7	The Courant stability criterion derived by von Neumann analysis	69
	2.8	Conclusion	71
		References	71
		Problems and assignments	72
3	The fi	nite difference time domain method in two and three dimensions	74
	3.1	Introduction	74
	3.2	The 2D FDTD algorithm	74
		3.2.1 Electromagnetic scattering problems	75
		3.2.2 The TE_z formulation	75
		3.2.3 Including a source: the scattered/total field formulation	79
		3.2.4 Meshing the scatterer	81
		3.2.5 Absorbing boundary conditions	82
		3.2.6 Developing the simulator	84
		3.2.7 FDTD analysis of TE scattering from a PEC cylinder	91
		3.2.8 Computational aspects	96
	3.3	The PML absorbing boundary condition	97
		3.3.1 An historical perspective	97
		3.3.2 A numerical absorber – pre-Berenger	99
		3.3.3 Berenger's split field PML formulation	101
		3.3.4 The FDTD update equations for a PML	102
		3.3.5 PML implementation issues	104
		1	
		3.3.6 Results for a split field PML	105
		3.3.6 Results for a split field PML3.3.7 Drawbacks of the Berenger PML	105
		•	

	3.3.10	Further reading on PMLs	108
	3.3.11	Conclusions on the PML	109
3.4	The 3I	FDTD algorithm	109
		The Yee cell in 3D	110
	3.4.2	An application: determining the resonant frequencies of a	
		PEC cavity	114
	3.4.3	Dispersion in two and three dimensions	115
3.5	Comm	ercial implementations	117
	3.5.1	An introductory example – a waveguide "through"	118
		A waveguide filter	120
	3.5.3	-	121
3.6	Furthe	r reading	124
3.7	Conch	_	125
	Refere		126
		ms and assignments	127
_		the method of moments, modelling thin wires	
		sional introduction to the method of moments: modelling thin wires	130
and ir	itinite c	ylinders	150
4.1	Introd	uction	130
4.2	An ele	ectrostatic example	131
	4.2.1	Some simplifying approximations	132
	4.2.2	Approximating the charge	133
		Collocation	134
	4.2.4	Solving the system of linear equations	135
	4.2.5	Results and discussion	136
4.3	Thin-	wire electrodynamics and the MoM	137
	4.3.1		137
	4.3.2	A caveat regarding thin-wire formulations	144
4.4	More	on basis functions	144
	4.4.1	The numerical electromagnetic code (NEC) – method of moments	144
	4.4.2	NEC basis functions	145
	4,4.3	Piecewise linear basis functions	147
	4.4.4	Junction treatments with piecewise linear basis functions	147
4.5	The n	nethod of weighted residuals	150
4.6		ering from infinite cylinders	152
	4.6.1	General derivation of surface integral equation operators	153
	4.6.2	The EFIE for TM scattering	154
	4.6.3	MoM solution of EFIE for TM scattering	155
	4.6.4	Coding in MATLAB for right circular PEC cylinder	157
	4.6.5		157
	4.6.6	Discussion, and the Fredholm alternative	159
4.7		er reading	160
4.8		lusions	162

		References	162		
		Problems and assignments	164		
5	The a	pplication of the FEKO and NEC-2 codes to thin-wire antenna modelling	166		
	5.1	Introduction	166		
	5.2	An introductory example: the dipole	168		
	5.3	A wire antenna array: the Yagi-Uda antenna	172		
	5.4	A log-periodic antenna	177		
	5.5	An axial mode helix antenna	185		
	5.6	A Wu–King loaded dipole	193		
	5.7	Conclusions	199		
		References	199		
6	The n	nethod of moments for surface modelling	201		
	6.1	Electric and magnetic field integral equations	201		
	6.2	The Rao-Wilton-Glisson (RWG) element	203		
	6.3	A mixed potential electric field integral equation for electromagnetic			
		scattering by surfaces of arbitrary shape	206		
		6.3.1 The electric field integral equation (EFIE)	206		
		6.3.2 The RWG basis function revisited	207		
		6.3.3 The MoM formulation	208		
		6.3.4 Derivation of the matrix entries	210		
		6.3.5 Numerical approximation of the matrix entries	211		
		6.3.6 Coding issues	214		
		6.3.7 Verification	215		
		6.3.8 Discussion	217		
	6.4	Some examples of surface modelling	218		
		6.4.1 Scattering from a sphere	218		
		6.4.2 The analytical solution	222		
	6.5	Modelling homogeneous material bodies using equivalent currents	224		
	6.6	Scattering from a dielectric sphere	226		
	6.7	Computational implications of surface and volume modelling with			
		the MoM	228		
	6.8	Hybrid MoM/asymptotic techniques for large problems	230		
		6.8.1 Introduction	230		
		6.8.2 Moment method/asymptotic hybrids	231		
		6.8.3 Physical optics and MoM hybridization	231		
		6.8.4 A FEKO example using the MoM/PO hybrid	234		
	6.9	Other approaches for the solution of electromagnetically large problems	237		
		6.9.1 Background	237		
		6.9.2 High-performance computing	238		
		6.9.3 FFT-based methods	248		
		6.9.4 The fast multipole method	251		

	Contents	хi
6.10	Further reading	258
6.11	Concluding comments	260
	References	260
	Problem	263
The n	nethod of moments and stratified media: theory	264
7.1	Introduction	264
7.2	Dyadic Green functions: some introductory notes	264
7.3	A static example of a stratified medium problem: the grounded	
	dielectric slab	266
7.4	The Sommerfeld potentials	269
	7.4.1 A brief revision of potential theory	269
	7.4.2 The Sommerfeld potentials	270
	7.4.3 An example: derivation of G_A^{xx} for single-layer microstrip	273
	7.4.4 The scalar potential and the mixed potential integral equation	276
	7.4.5 Surface waves	277
7.5	Evaluating the Sommerfeld integrals	278 278
	7.5.1 Approximate evaluation of the Sommerfeld integrals	279
	7.5.2 Numerical integration in the spectral domain	287
	7.5.3 Locating the pole 7.5.4 General source locations	288
	7.5.5 Some results for the Sommerfeld potentials	289
7.6		289
7.7	Further reading	297
,.,	References	298
	Assignments	299
The r	nethod of moments and stratified media: practical applications of a	
comi	nercial code	300
8.1	Printed antenna and microstrip technology: a brief review	300
8.2	A simple patch antenna	301
8.3	Mutual coupling between microstrip antennas	303
8.4	An array with "scan blindness"	308
8.5	A concluding discussion of stratified media formulations	314
	References	315
A on	e-dimensional introduction to the finite element method	31
9.1	Introduction	31′
9.2	The variational boundary value problem: the transmission line	
	problem revisited	318
	9.2.1 The model problem	319
	9.2.2 The equivalent variational functional	320

:

10

	9.2.3	The finite element approximation of the functional	321
	9.2.4	Evaluating the elemental matrices	323
	9.2.5	Assembling the system	325
	9.2.6	Rendering the functional stationary and solving the problem	327
	9.2.7	Coding the FEM	328
	9.2.8	Results and rate of convergence	329
9.3	Improv	ing and generalizing the FEM solution	331
	9.3.1	Higher-order elements	331
	9.3.2	More general boundary conditions	337
9.4	Further	reading	339
9.5	Conclu	sions	340
	Referen	nces	340
	Probler	ns and assignments	341
The fi	inite elen	nent method in two dimensions: scalar and vector elements	342
10.1	Introdu	ection	342
10.2	Finite e	element solution of the Laplace equation in two dimensions using	
		elements	343
	10.2.1	The variational boundary value problem approach	343
	10.2.2	Some practical issues: assembling the system	349
	10.2.3	An application to microstrip	352
	10.2.4	More on variational functionals	355
	10.2.5	The Poisson equation: incorporating a source term	358
	10.2.6	Discussion	358
10.3	The Ga	llerkin (weighted residual) formulation	359
10.4	Simple	x coordinates	364
	10.4.1	Simplex coordinates in one, two and three dimensions	365
	10.4.2	Some properties of simplex coordinates	366
10.5	The hig	gh-frequency variational functional	367
10.6	The nu	ll space of the curl operator and spurious modes	367
10.7	Vector	(edge) elements	371
	10.7.1	An historical perspective	371
	10.7.2	Theory of vector elements	372
	10.7.3	Vector elements on triangles – the Whitney element	374
10.8		ation to waveguide eigenvalue analysis	378
	10.8.1	The two-dimensional variational functional for an homogeneous	
		waveguide	378
	10.8.2	Explicit formula for the elemental matrix entries	379
	10.8.3	Coding	382
	10.8.4	Results	386
	10.8.5	Degenerate modes	389
	10.8.6	Higher-order vector elements	391
10.9	Waveo	uide dispersion analysis	394

٦_		۱.	-4	-
:n	n	м	nı	13.

		components	394
		10.9.2 The cut-off eigenanalysis formulation	396
		10.9.3 Homogeneously filled guides: TE modes only	397
		10.9.4 Eigensolution	398
		10.9.5 Results: a half-filled dielectric loaded rectangular waveguide	398
		10.9.6 Alternate formulations for inhomogeneously loaded waveguides	400
	10.10	Further reading	400
	10.11	Conclusions	402
		References	403
		Problems and assignments	406
11	The fin	ite element method in three dimensions	407
	11.1	The three-dimensional Whitney element	407
		11.1.1 Explicit formula for the tetrahedral elemental matrix entries	408
		11.1.2 Coding	411
	11.2	Higher-order elements	415
		11.2.1 Complete versus mixed-order elements	416
		11.2.2 Hierarchal vector basis functions	416
		11.2.3 Properties of hierarchal basis functions	419
		11.2.4 Practical impact of higher-order basis functions in an FEM code	421
	11.3	The FEM from the variational boundary value problem viewpoint	427
	11.4	A deterministic 3D application: waveguide obstacle analysis	429
		11.4.1 Introduction	429
		11.4.2 The waveguide formulation	430
	11.5	Application to two waveguide discontinuity problems	432
		11.5.1 Application to a Magic-T	432
		11.5.2 Application to a capacitive iris	436
	11.6	Open-region finite element method formulations: absorbing boundary	
		conditions (ABCs)	44]
		11.6.1 Formulation in terms of the scattered field	442
		11.6.2 Formulation in terms of the total field	443
		11.6.3 Discussion	444
	11.7	Further reading	444
	11.8	Conclusions	445
		References	445
		Problems and assignments	448
12	A selec	ction of more advanced topics in full-wave computational electromagnetics	45
	12.1	Hybrid finite element/method of moments formulations	45
		12.1.1 Introduction	45.
		12.1.2 Theoretical background	452
	12.2	An application of the FEM/MoM hybrid – GSM base stations	454

10.9.1 A vector formulation based on the transverse and axial field

	12.2.1	Applications of FEM/MoM hybrid formulations	454
	12.2.2	Human exposure assessment near GSM base stations	455
12.3	Time de	omain FEM	457
	12.3.1	Basic formulation and implementation	458
	12.3.2	Preliminary results	461
	12.3.3	The FDTD as a special case of the FETD	464
	12.3.4	Hybrid FDTD/FETD schemes	468
12.4	Sparse	matrix solvers	468
	12.4.1	Profile-in skyline storage	469
	12.4.2	Compressed row storage	470
	12,4.3	Implementation of matrix solution using these storage schemes	471
	12.4.4	Results for sparse storage schemes	47]
12.5	A poste	eriori error estimation and adaptive meshing	473
	12.5.1	Explicit, residual-based error estimators	474
	12.5.2	An example of the application of an error estimator	476
12.6	Further	reading and conclusions	478
	Referen	nces	481
Appen	dix A: Th	ne Whitney element	484
Appen	dix B: Th	e Newmark-β time-stepping algorithm	486
	Referen	aces	488
Appen	dix C: Oi	n the convergence of the MoM	489
	Referen	ace	490
Appen	dix D: U.	seful formulas for simplex coordinates	491
Appen	dix E: We	eb resources	493
Appen	ppendix F: MATLAB files supporting this text 49		
Index			498