Confectionery and Chocolate Engineering

Principles and Applications

Ferenc Mohos

Contents

Acknow	Acknowledgements		
Part I	Theo	retical introduction	1
Chapte	r 1 Pı	rinciples of food engineering	3
1.1	Introdu	ction	3
	1.1.1	The peculiarities of food engineering	3
	1.1.2	The hierarchical and semi-hierarchical structure of materials	5
	1.1.3	Application of the Damköhler equations in food engineering	6
1.2	The Da	mköhler equations	6
1.3	Investig	ation of the Damköhler equations by means of	
	similari	ty theory	8
	1.3.1	Dimensionless numbers	8
	1.3.2	Degrees of freedom of an operational unit	11
	1.3.3	Polynomials as solutions of the Damköhler equations	12
1.4	Analogi	ies	13
	1.4.1	The Reynolds analogy	13
	1.4.2	<i></i>	15
	1.4.3	Similarity and analogy	16
1.5		ional analysis	16
1.6	The Bu	ckingham Π theorem	17
Furthe	r reading		18
Chapte	er 2 C	haracterization of substances used in the confectionery industry	19
2.1	Qualita	tive characterization of substances	19
	2.1.1	Principle of characterization	19
	2.1.2	v 1	20
	2.1.3	Classification of confectionery products according to their	
		characteristic phase conditions	27
	2.1.4	Phase transitions – a bridge between sugar sweets and chocolate	28
2.2		tative characterization of confectionery products	29
	2.2.1	Composition of chocolates and compounds	29
	2.2.2	Composition of sugar confectionery	35
	2.2.3	Composition of biscuits, crackers and wafers	43
2.3		ation of recipes	45
	2.3.1	Recipes and net/gross material consumption	45
	2.3.2	Planning of material consumption	48

Chapte	r 3 Eng	gineering properties of foods	52
3.1	Introduc	tion	53
3.2	Density		53
	3.2.1	Solids and powdered solids	54
	3.2.2	Particle density	54
	3.2.3	Bulk density and porosity	55
	3.2.4	Loose bulk density	55
	3.2.5	Dispersions of various kinds, and solutions	56
3.3		ental functions of thermodynamics	56
	3.3.1	Internal energy	56
	3.3.2	Enthalpy	58
	3.3.3	Specific heat capacity calculations	58
3.4		eat and heat of reaction	62
	3.4.1	Latent heat and free enthalpy	62
	3.4.2	Phase transitions	63
3.5		conductivity	66
	3.5.1	First Fourier equation	66
	3.5.2	Heterogeneous materials	67
	3.5.3	Liquid foods	67
	3.5.4	Liquids containing suspended particles	68
	3.5.5	Gases	68
3.6		diffusivity and Prandtl number	69
	3.6.1	Second Fourier equation	69
	3.6.2	Liquids and gases	69
	3.6.3	Prandtl number	70
3.7		fusivity and Schmidt number	71
	3.7.1	Law of mass diffusion (Fick's first law)	71
	3.7.2	Mutual mass diffusion	72
	3.7.3	Mass diffusion in liquids	72
	3.7.4	Temperature dependence of diffusion	73
	3.7.5	Mass diffusion in complex solid foodstuffs	74
2.0	3.7.6	Schmidt number	75
3.8		c properties	76
	3.8.1	Radio frequency and microwave heating	76
	3.8.2	Power absorption – the Lambert–Beer law	77 7 2
	3.8.3	Microwave and radio frequency generators	78
2.0	3.8.4	Analytical applications	81
3.9		l conductivity	81
	3.9.1	Ohm's law	81
	3.9.2	Electrical conductivity of metals and electrolytes; the	02
	202	Wiedemann-Franz law and Faraday's law	82
	3.9.3 3.9.4	Electrical conductivity of materials used in confectionery	83
3.10		Ohmic heating technology	83
3.10		absorption properties characteristics of food powders	85 86
3.11	3.11.1	Classification of food powders	86 86
	3.11.2	Surface activity	86 87
	3.11.3	Effect of moisture content and anticaking agents	
	J.11.3	Effect of moisture content and anticaking agents	87

	3.11.4	Mechanical strength, dust formation and explosibility index	88
	3.11.5	Compressibility	89
	3.11.6	Angle of repose	91
	3.11.7	Flowability	91
	3.11.8	Caking	92
	3.11.9	Effect of anticaking agents	95
D 41	3.11.10	Segregation	95
Furthe	er reading		96
Chapte	er 4 Th	e rheology of foods and sweets	97
4.1	_	y: its importance in the confectionery industry	98
4.2	Stress ar	nd strain	98
	4.2.1	Stress tensor	98
	4.2.2		100
	4.2.3		103
	4.2.4	Constitutive equations	104
4.3	Solid be		105
	4.3.1	Rigid body	105
	4.3.2	Elastic body (or Hookean body/model)	105
	4.3.3	Linear elastic and nonlinear elastic materials	107
	4.3.4	Texture of chocolate	108
4.4	Fluid be		109
	4.4.1	Ideal fluids and Pascal bodies	109
	4.4.2		109
	4.4.3	2.174123.4764.67	126
		Viscoelastic functions	132
		Oscillatory testing	141
	4.4.6	Electrorheology	144
4.5		y of solutions	144
4.6	,	y of emulsions	146
		Viscosity of dilute emulsions	146
		Viscosity of concentrated emulsions	147
4.5	4.6.3	Rheological properties of flocculated emulsions	148
4.7		y of suspensions	149
4.8	-	gical properties of gels	151
	4.8.1	*	151
	4.8.2	Scaling behaviour of the elastic properties of colloidal gels	152
	4.8.3	Classification of gels with respect to the nature of the	
	1.0.5	structural elements	153
4.9	Rheolog	gical properties of sweets	156
	4.9.1	Chocolate mass	156
	4.9.2	Truffle mass	162
	4.9.3	Praline mass	163
	4.9.4	Fondant mass	163
	4.9.5	Dessert masses	164
	4.9.6	Nut brittle (croquante) masses	165
	4.9.7	Whipped masses	166

2	4.10	Rheolog	gical properties of wheat flour doughs	166
		4.10.1	Complex rheological models for describing food systems	166
		4.10.2	Special testing methods for the rheological study of doughs	170
		4.10.3	Studies of the consistency of dough	172
J	Furthe	er reading	y >	175
(Chapte	er 5 In	troduction to food colloids	176
	5.1		loidal state	177
		5.1.1	Colloids in the confectionery industry	177
		5.1.2	The colloidal region	177
		5.1.3	The various types of colloidal systems	179
	5.2		ion of colloids	179
		5.2.1	Microphases	179
		5.2.2	Macromolecules	180
		5.2.3	Micelles	180
		5.2.4	Disperse (or non-cohesive) and cohesive systems	180
		5.2.5	Energy conditions for colloid formation	181
	5.3	-	ties of macromolecular colloids	182
		5.3.1	Structural types	182
		5.3.2	Interactions between dissolved macromolecules	184
		5.3.3	Structural changes in solid polymers	184
	5.4	-	ties of colloids of association	188 188
		5.4.1	Types of colloids of association	100
		5.4.2	Parameters influencing the structure of micelles and the	190
	c c	D	value of $c_{\rm M}$	190
	5.5	-	ties of interfaces	190
		5.5.1	Boundary layer and surface energy Formation of boundary layer: adsorption	190
		5.5.2	Dependence of interfacial energy on surface morphology	191
		5.5.3	Phenomena when phases are in contact	193
		5.5.4 5.5.5	Adsorption on the free surface of a liquid	196
	5.6		cal properties of interfaces	198
	5.0	5.6.1	The electric double layer and electrokinetic phenomena	198
		5.6.2	Structure of the electric double layer	199
	5.7		of colloidal stability: the DLVO theory	200
	5.8		ty and changes of colloids and coarse dispersions	203
	5.0		Stability of emulsions	203
		5.8.2	Two-phase emulsions	205
		5.8.3	Three-phase emulsions	205
		5.8.4	Two liquid phases plus a solid phase	205
		5.8.5	Emulsifying properties of food proteins	207
		5.8.6	Emulsion droplet size data and the kinetics of emulsification	207
		5.8.7	Bancroft's rule for the type of emulsion	209
		5.8.8	HLB value and stabilization of emulsions	210
		5.8.9	Emulsifiers used in the confectionery industry	211
	5.9		ion instability	212
		5.9.1	Mechanisms of destabilization	212
		5.9.2	Flocculation	213
		5.9.3	Sedimentation (creaming)	215

	5.9.4	Coalescence	219
	5.9.5	Ostwald ripening in emulsions	220
5.10	Phase in	nversion	221
5.11	Foams		222
	5.11.1	Transient and metastable (permanent) foams	222
	5.11.2	Expansion ratio and dispersity	224
	5.11.3	Disproportionation	225
	5.11.4	Foam stability: coefficient of stability and lifetime histogram	229
	5.11.5	Stability of polyhedral foams	230
	5.11.6	Thinning of foam films and foam drainage	230
	5.11.7	Methods of improving foam stability	231
Furth	er reading		233
	u Di		225
Part 1		ical operations	235
Chapt		omminution	237
6.1	_	s during size reduction	238
	6.1.1	Comminution of non-cellular and cellular substances	238
	6.1.2	Grinding and crushing	238
	6.1.3	Dry and wet grinding	239
6.2		er's 'surface' theory	239
6.3		'volume' theory	240
6.4		rd, or Bond, theory	241
6.5		requirement for comminution	241
	6.5.1	Work index	241
	6.5.2	Differential equation for the energy requirement for	
		comminution	241
6.6		size distribution of ground products	242
	6.6.1	Particle size	242
	6.6.2	Screening	243
	6.6.3	Sedimentation analysis	245
	6.6.4	Electrical-sensing-zone method of particle size distribution	
		determination (Coulter method)	245
6.7		e size distributions	245
	6.7.1	Rosin-Rammler (RR) distribution	245
	6.7.2	Normal distribution (Gaussian distribution, N distribution)	246
	6.7.3	Log-normal (LN) distribution (Kolmogorov distribution)	246
	6.7.4	Gates-Gaudin-Schumann (GGS) distribution	247
6.8		s of grinding	247
6.9		nution by five-roll refiners	248
	6.9.1	Effect of a five-roll refiner on particles	248
	6.9.2	Volume and mass flow in a five-roll refiner	251
6.10		ng by a melangeur	253
6.11		inution by a stirred ball mill	256
	6.11.1	Kinetics of comminution in a stirred ball mill	257
	6.11.2	Power requirement of a stirred ball mill	257
	6.11.3	Residence time distribution in a stirred ball mill	259
Furth	ıer readin	g	261

Chapt	er 7 M	ixing/kneading	263
7.1		al solutions to the problem of mixing	263
7.2		haracteristics of a stirrer	264
7.3	•	time characteristics of a stirrer	266
7.4		ntative shear rate and viscosity for mixing	266
7.5		tion of the Reynolds number for mixing	266
7.6		of powders	267
7.0	7.6.1		267
	7.6.2	Scaling up of agitated centrifugal mixers	271
	7.6.3	Mixing time for powders	272
	7.6.4	Power consumption	273
7.7		of fluids of high viscosity	274
		of finds of high viscosity f impeller speed on heat and mass transfer	275
7.8		Heat transfer	275
	7.8.1		275
7.0	7.8.2	Mass transfer	276
7.9		by blade mixers	277
7.10	Mixing		277
7.11	-	of two liquids	278
Furth	er reading	5	210
Chap	ter 8 Se	plutions	27 9
8.1		tion of aqueous solutions of carbohydrates	279
0.2	8.1.1	Mass balance	279
	8.1.2	Parameters characterizing carbohydrate solutions	280
8.2		ity of sucrose in water	282
0.2	8.2.1	Solubility number of sucrose	282
8.3		us solutions of sucrose and glucose syrup	283
0.5	8.3.1	Syrup ratio	283
8.4		us sucrose solutions containing invert sugar	285
8.5	Solubil	ity of sucrose in the presence of starch syrup and invert sugar	285
8.6		dissolution	286
	ner readin		288
ruiti	iei icaum	8	- * -
Chap		vaporation	289
9.1		tical background – Raoult's law	289
9.2	Boiling	point of sucrose/water solutions at atmospheric pressure	291
9.3		ation of a modification of Raoult's law to calculate the boiling	
	point c	f carbohydrate/water solutions at decreased pressure	291
	9.3.1	Sucrose/water solutions	291
	9.3.2	Dextrose/water solutions	292
	9.3.3	Starch syrup/water solutions	292
	9.3.4	Invert sugar solutions	292
	9.3.5	Approximate formulae for the elevation of the boiling point of	
		aqueous sugar solutions	292
9.4	Vapou	r pressure formulae for carbohydrate/water solutions	295
	9.4.1	Vapour pressure formulae	295
	9.4.2	Antoine's rule	297
	9.4.3	Trouton's rule	299

301
302
points of sucrose solutions 303
ess for chewy candy 304
305
307
307
309
310
310
310
311
For crystallization 312
rated solution 313
315
317
318
319
322
h rate 323
the hydrodynamic conditions 324
ture based on the diffusion
326
329
329
e growth and crystal thickening 330
333
334
345
346
346
346
346
347
lance 347
349
lization 350
350
ect of temperature or
351
351
r structure of fat melts 351
351
352
353
ry, differential thermal analysis
ods 354
fit it

10.8	Crystalli	zation of glycerol esters: Polymorphism	355
10.9		zation of cocoa butter	359
	10.9.1	Polymorphism of cocoa butter	359
	10.9.2	Tempering of cocoa butter and chocolate mass	360
	10.9.3	Shaping (moulding) and cooling of cocoa butter and chocolate	365
	10.9.4	Sugar blooming and dew point temperature	367
	10.9.5	Crystallization during storage of chocolate products	368
	10.9.6	Bloom inhibition	370
	10.9.7	Tempering of cocoa powder	371
10.10		ization of fat masses	371
	10.10.1	Fat masses and their applications	371
	10.10.2	Cocoa butter equivalents and improvers	372
	10.10.3	Fats for compounds and coatings	374
	10.10.4	•	376
	10.10.5	•	378
		Filling fats	379
	10.10.7	-	381
10.11		ization of confectionery fats with a high trans-fat portion	382
	10.11.1	Coating fats and coatings	383
	10.11.2		383
	10.11.3	Future trends in the manufacture of trans-free special	
		confectionery fats	384
10.12	Modelli	ng of chocolate cooling processes and tempering	385
	10.12.1		385
	10.12.2	Modelling the temperature distribution in cooling chocolate	
		moulds	386
	10.12.3	Modelling of chocolate tempering process	390
Furth	er reading	5	392
Chapt	er 11 Ge	elling, emulsifying, stabilizing and foam formation	394
11.1		olloids used in confectionery	395
11.2	Agar	·	395
	11.2.1	Isolation of agar	395
	11.2.2	Types of agar	396
	11,2.3	Solution properties	396
	11.2.4	Gel properties	397
	11.2.5	Setting point of sol and melting point of gel	398
	11.2.6	Syneresis of an agar gel	398
	11.2.7	Technology of manufacturing agar gels	399
11.3	Alginate	es	400
	11.3.1	Isolation and structure of alginates	400
	11.3.2	Mechanism of gelation	401
	11.3.3	Preparation of a gel	401
	11.3.4	Fields of application	402
11.4	Carrage		402
	11.4.1	Isolation and structure of carrageenans	402
	11.4.2	Solution properties	403

	11.4.3	Depolymerization of carrageenan	404
	11.4.4	Gel formation and hysteresis	405
	11.4.5	Setting temperature and syneresis	405
	11.4.6	Specific interactions	405
	11.4.7	Utilization	406
11.5	Furcellar		407
11.6	Gum ara		407
			408
11.7	Gum tra	=	408
11.8	Guaran		409
11.9	Locust b	ean gum	409
11.10	Pectin	Total discount of a source of the stime	409
	11.10.1	Isolation and composition of pectin	
	11.10.2	High-methoxyl (HM) pectins	410
	11.10.3	Low-methoxyl (LM) pectins	411
	11.10.4	Low-methoxyl (LM) amidated pectins	411
	11.10.5	Gelling mechanisms	411
	11.10.6	Technology of manufacturing pectin jellies	412
11.11	Starch		413
	11.11.1	Occurrence and composition of starch	413
	11.11.2	Modified starches	414
	11.11.3	Utilization in the confectionery industry	414
11.12	Xanthan	gum	416
11.13	Gelatin		416
	11.13.1	Occurrence and composition of gelatin	416
	11.13.2	Solubility	417
	11.13.3	Gel formation	417
	11.13.4	Viscosity	418
	11.13.5	Amphoteric properties	418
	11.13.6	Surface-active/protective-colloid properties and utilization	419
	11.13.7	Methods of dissolution	420
	11.13.8	Stability of gelatin solutions	421
	11.13.9	Confectionery applications	421
11.14	Egg prot	teins	422
	11.14.1	Fields of application	422
	11.14.2	Structure	422
	11.14.3	Egg-white gels	423
	11.14.4	Egg-white foams	424
	11.14.5	Egg-yolk gels	424
	11.14.6	Whole-egg gcls	425
11.15	Foam fo		425
	11.15.1	Fields of application	425
	11.15.2	Velocity of bubble rise	426
	11.15.3	Whipping	429
	11.15.4	Continuous industrial aeration	430
	11.15.5	Industrial foaming methods	432
	11.15.6	In situ generation of foam	432
Furthe	er reading	•	433
	, reading		

Chapt	er 12 Tra	ansport	434
12.1	Types of transport		
12.2	Calculat	ion of flow rate of non-Newtonian fluids	434
12.3	Transpo	rting dessert masses in long pipes	436
12.4	Changes	in pipe direction	437
12.5	Laminar	unsteady flow	438
12.6	Transpo	rt of flour and sugar by air flow	438
		Physical parameters of air	438
	12.6.2	Air flow in a tube	438
	12.6.3	Flow properties of transported powders	439
	12.6.4	Power requirement of air flow	441
	12.6.5	Measurement of a pneumatic system	442
Further reading			
Chapt	er 13 Pro	essin <i>o</i>	445
13.1		ions of pressing in the confectionery industry	445
13.2		of pressing	445
13.3		quor pressing	448
	er reading		449
-			
_	er 14 Ex		451
14.1		rough a converging die	451
	14.1.1	Theoretical principles of the dimensioning of extruders	451
		Pressure loss in the shaping of pastes	455
		Design of converging die	456
14.2		used for shaping confectionery pastes	459
	14.2.1	Screw feeders	459
		Cog-wheel feeders	460
	14.2.3	Screw mixers and extruders	461
14.3		n cooking	464
14. 4	Roller e		465
		Roller extrusion of biscuit doughs	465
	14.4.2	Feeding by roller extrusion	467
Furth	er reading		467
Chapt	er 15 Pa	rticle agglomeration: Instantization	
-		d tabletting	469
15.1	Theoreti	cal background	469
	15.1.1	Processes resulting from particle agglomeration	469
	15.1.2	Solidity of a granule	472
	15.1.3	Capillary attractive forces in the case of liquid bridges	472
	15.1.4	Capillary attractive forces in the case of no liquid bridges	473
	15.1.5	Solidity of a granule in the case of dry granulation	474
	15.1.6	Water sorption properties of particles	475
	15.1.7	Effect of electrostatic forces on the solidity of a granule	477
	15.1.8	Effect of crystal bridges on the solidity of a granule	478
	15.1.9	Comparison of the various attractive forces affecting granulation	479
	15.1.10	Effect of surface roughness on the attractive forces	479

15.2	Process	es of agglomeration	481
	15.2.1	Agglomeration in the confectionery industry	481
	15.2.2	Agglomeration from liquid phase	481
	15.2.3	Agglomeration of powders: Tabletting or dry granulation	482
15.3	Granul	ation by fluidization	482
	15.3.1	Instantization by granulation: Wetting of particles	482
	15.3.2	Processes of fluidization	483
15.4	Tablett	ing	484
	15.4.1	Tablets as sweets	484
	15.4.2	Types of tabletting	485
	15.4.3	Compression, consolidation and compaction	486
	15.4.4	Characteristics of the compaction process	488
	15.4.5	Quality properties of tablets	492
Furth	er reading	g	492
Part I	II Chen	nical and complex operations: Stability of sweets	493
Chapt	er 16 C	hemical operations (inversion and caramelization), ripening and	
тг		omplex operations	495
16.1	Inversion		495
	16.1.1	Hydrolysis of sucrose by the effect of acids	495
	16.1.2	A specific type of acidic inversion: Inversion by cream of	.,,
	1911.	tartar	498
	16.1.3	Enzymatic inversion	499
16.2		elization	502
10.2	16.2.1	Maillard reaction	502
	16.2.2	Sugar melting	504
16.3		ation of cocoa material	505
	16.3.1	Purposes and methods of alkalization	505
	16.3.2	German process	506
16.4	Ripenir	<u>-</u>	507
10.1	16,4.1	Ripening processes of diffusion	507
	16.4.2	Chemical and enzymatic reactions during ripening	509
16.5		ex operations	510
10.5	16.5.1	Complexity of the operations used in the confectionery	510
	10.5.1	industry	510
	16.5.2	Conching	510
	16.5.3	New trends in the manufacture of chocolate	521
	16.5.4	Modelling the structure of dough	522
Furth	er readin		523
Chant	ter 17 W	Vater activity, shelf life and storage	525
17.1	Water		525
	17.1.1	Definition of water activity	525
	17.1.2	Adsorption/desorption of water	527
	17.1.2	Measurement of water activity	527
	17.1.4	Factors lowering water activity	533
	17.1.5	Sorption isotherms	534

	17.1.6	Hygroscopicity of confectionery products	535
	17.1.7	Calculation of equilibrium relative humidity of	
		confectionery products	538
17.2		e and storage	541
	17.2.1	Definition of shelf life	541
	17.2.2	Role of light and atmospheric oxygen	541
	17.2.3	Role of temperature	541
	17.2.4	Role of water activity	541
	17.2.5	· · · · · · · · · · · · · · · · · · ·	542
	17.2.6	Concept of mould-free shelf life	542
17.3	_	scheduling	547
Furthe	er reading		548
Chante	er 18 St	ability of food systems	550
18.1		n use of the concept of food stability	550
18.2		theories: types of stability	550
10.2	18.2.1	Orbital stability and Lyapunov stability	550
	18.2.2	Asymptotic and marginal (or Lyapunov) stability	551
		Local and global stability	552
18.3		e as a case of marginal stability	552
18.4		matrix of a food system	553
		Linear models	553
	18.4.2		554
Part I	V Appe	ndices	555
Appen	dix 1 Da	ata on engineering properties of materials used and made by the	
	co	nfectionery industry	557
A1.1	Carboh	ydrates	557
A1.2	Oils and	l fats	566
A1.3	Raw ma	aterials, semi-finished products and finished products	567
Annon	dix 2 So	olutions of sucrose, corn syrup and other monosaccharides and	
Appen		saccharides	579
		rvey of fluid models	582
A3.1		position method for calculation of flow rate of	500
		ical models	582
	A3.1.1	Principle of the decomposition method	582
	A3.1.2	Bingham model	583
	A3.1.3	Casson model $(n = 1/2)$	585
	A3.1.4	Peek, McLean and Williamson model	586
	A3.1.5	Reiner-Philippoff model	587
	A3.1.6	Reiner model Rehinowitzeh, Fisanschitze Staigen and One model	587
	A3.1.7	Rabinowitsch, Eisenschitz, Steiger and Ory model	588 589
	A3.1.8 A3.1.9	Oldroyd model	590
	A3.1.9 A3.1.10	Weissenberg model Ellis model	590 591
	C 1. I. IV	TAIRS HIVARD	-ファエ

		Meter model	591
	A3.1.12	Herschel-Bulkley-Porst-Markowitsch-Houwink (HBPMH)	
		(or generalized Ostwald-deWaele) model	592
		Ostwald-de Waele model	594
		Williamson model	595
A3.2	Calculation of the friction coefficient ξ of non-Newtonian fluids in the		
	laminar region		596
A3.3		ization of the Casson model	597
	A3.3.1	Theoretical background to the exponent <i>n</i>	597
	A3.3.2 Theoretical foundation of the Bingham model		598
A3.4	Determination of the exponent n of the flow curve of a generalized		
	Casson fluid		598
A3.5	Dependence of shear rate on the exponent n in the case of a		
	generalized Casson fluid		600
A3.6		ion of the flow rate for a generalized Casson fluid	601
A3.7			603
Furth	er reading		605
	dix 4 Fra	actals	606
A4.1		r forms – fractal geometry	606
A4.2	Box-cou	nting dimension	606
A4.3	3 Particle-counting method		607
A4.4	4 Fractal backbone dimension		608
Further reading			608
Appen	dix 5 Int	roduction to structure theory	609
A5.1	General	features of structure theory	609
A5.2	Attribut	es and structure: A qualitative description	610
A5.3		nical structures	611
A5.4	Structur	e of measures: A quantitative description	611
A5.5		ns of conservation and balance	612
A5.6	Algebra	ic structure of chemical changes	614
A5.7		mological triangle: External technological structure	614
A5.8		ed substantial fragments	615
Appen	ndix 6 Te	chnological lay-outs	617
	Further reading		
Refere	ences		630
Index			668