Join the discussion @ p2p.wr Wrox Programmer to Programmer™

Master Parallel Extensions with .NET 4

Gaston C. Hillar



CONTENTS

FOREWORD Xix
INTRODUCTION xXxi
CHAPTER 1: TASK-BASED PROGRAMMING 1
Working with Shared-Memory Multicore 2
Differences Betweaen Shared-Memory Multicore and
Distributed-Memory Systems 3
Parallel Programming and Multicore Programming 4
tUnderstanding Hardware Threads and
Software Threads 5
Understanding Amdahl's Law ‘ 10
Considering Gustafson's Law 13
Working with Lightweight Concurrency 16
Creating Successful Task-Based Designs 17
Designing With Concurrency in Mind 18
Understanding the Differences between Interleaved Concurrency,
Concurrency, and Parallelism 19
Parallelizing Tasks 19
Minimizing Critical Sections 21
Understanding Rules for Parallel Programming for Multicore 22
Preparing for NUMA and Higher Scalability 22
Deciding the Convenience of Going Paraliel 27
Summary 28
CHAPTER 2: IMPERATIVE DATA PARALLELISM 29
Launching Parallel Tasks 30
System.Threading.Tasks.Parallel Class 31
Parallel.Invoke 32
No Specific Execution Order 33
Advantages and Trade-Offs 37
Interleaved Concurrency and Concurrency 38
Transforming Sequential Code to Parallel Code ! 40
Detecting Parallelizable Hotspots 40
Measuring Speedups Achieved by Parallel Execution 43
Understanding the Concurrent Execution 45

Parallelizing Loops 45



Parallel.For 46
Refactoring an Existing Sequential Loop 48
Measuring Scalability 50
Working with Embarrassingly Parallel Problems 52

Parallel.ForEach 52
Working with Partitions in a Parallel Loop 54
Optimizing the Partitions According to the Number of Cores 56
Working with IEnumerable Scurces of Data 58

Exiting from Parallel Loops 60
Understanding ParallelLoopState 62
Analyzing the Results of a Parallel Loop Execution 63
Catching Exceptions that Occur Inside Parallel Loops 84

Specifying the Desired Degree of Parallelism 66

ParallelOptions &6

Counting Hardware Threads 69

Logical Cores Aren’t Physical Cores 70

Using Gantt Charts to Detect Critical Sections 7
Summary 72
CHAPTER 3: IMPERATIVE TASK PARALLELISM 73
Creating and Managing Tasks 74

System.Theading. Tasks.Task 75

Understanding a Task’s Status and Lifecycle 77
TaskStatus: Initial States 77
TaskStatus: Final States 78

Using Tasks to Parallelize Code 78
Starting Tasks 79
Visualizing Tasks Using Parallel Tasks and Parallel Stacks 80

Waiting for Tasks to Finish 85

Forgetting About Complex Threads 85

Cancelling Tasks Using Tokens 86
CancellationTokenSource 89
CancellationToken 89
TaskFactory 90
Handling Exceptions Thrown by Tasks 9N

Returning Values from Tasks 92

TaskCreationQptions 95

Chaining Multiple Tasks Using Continuations 95
Mixing Parallel and Sequential Code with Continuations 97
Working with Complex Continuations 97
TaskContinuationOptions 28



Programming Complex Parallel Algorithms with

Critical Sections Using Tasks 100
Preparing the Code for Concurrency and Parallelism 101
Summary 101
CHAPTER 4: CONCURRENT COLLECTIONS 103
Understanding the Features Offered by
Concurrent Collections 104
System.Collections.Concurrent W37
ConcurrentQueue 107
Understanding a Parallel Producer-Consumer Pattern 11
Working with Multiple Producers and Consumers 15
Designing Pipelines by Using Concurrent Collections 120
ConcurrentStack 121
Transforming Arrays and Unsafe Collections into
Concurrent Collections 128
ConcurrentBag ; 125
IProducerConsumerCollection 136
BlockingCollection | 137
Cancelling Operations on a BlockingCollection 142
implementing a Filtering Pipeline with Many
BlockingCollection Instances 144
ConcurrentDictionary 150
Summary 155
CHAPTER 5: COORDINATION DATA STRUCTURES 157
Using Cars and Lanes to Understand the Concurrency Nightmares 158
Undesired Side Effects 158
Race Conditions 159
Deadlocks 160
A Lock-Free Algorithm with Atomic Operations 161
A Lock-Free Algorithm with Local Storage 162
Understanding New Synchronization Mechanisms 163
Working with Synchronization Primitives 164
Synchronizing Concurrent Tasks with Barriers 165
Barrier and ContinueWhenAl| 171
Catching Exceptions in all Participating Tasks 172
Working with Timeouts 173
Working with a Dynamic Number of Participants 178
Working with Mutual-Exclusion Locks 179

Working with Monitor 182



Working with Timeouts for Locks 184

Refactoring Code to Avoid Locks 187
Using Spin Locks as Mutual-Exclusion Lock Primitives 190
Working with Timeouts 193
Working with Spin-Based Waiting 194
Spinning and Yielding 197
Using the Volatile Modifier 200
Working with Lightweight Manual Reset Events 201
Working with ManualResetiventSiim to Spin and Walt 201
Working with Timeouts and Cancellations 206
Working with ManualResetEvent 210
Limiting Concurrency to Access a Resource 21
Working with SemaphoreSlim 212
Working with Timeouts and Cancellations 216
Working with Semaphore 216
Simplifying Dynamic Fork and Join Scenarios with CountdownEvent 219
Working with Atomic Operations 223
Summary 228
CHAPTER 6: PLINQ: DECLARATIVE DATA PARALLELISM 229
Transforming LINQ into PLINQ 230
ParallelEnumerable and Its AsParallel Method 232
AsOrdered and the orderby Clause 233
Specifying the Execution Mode 237
Understanding Partitioning in PLING 237
Performing Reduction Operations with PLING 242
Creating Custom PLINQ Aggregate Functions 245
Concurrent PLINQ Tasks 249
Cancelling PLINQ 253
Specifying the Desired Degree of Parallelism 255
WithDegreeOfParallelism 255
Measuing Scalability 257
Working with ForAdl 259
Differences Between foreach and ForAll 261
Measuring Scalability 261
Configuring How Results Are Returned
by Using WithMergeOptions 264
Handling Exceptions Thrown by PLINQ 266
Using PLINQ to Execute MapReduce Algorithms 268
Designing Serial Stages Using PLINQ 271
Lacating Processing Bottlenecks 273

Summary 273



CHAPTER 7: VISUAL STUDIO 2010 TASK DEBUGGING CAPABILITIES 275

Taking Advantage of Multi-Monitor Support 275
Understanding the Parallel Tasks Debugger Window 279
Viewing the Parallel Stacks Diagram 286
Following the Concurrent Code 294
Debugging Anonymous Methods 304
Viewing Methods 305
Viewing Threads in the
Source Code 307
Detecting Deadlocks 310
Summary 316
CHAPTER 8: THREAD POOLS 317
Going Downstairs from the Tasks Floor 317
Understanding the New CLR 4 Thread Pool Engine 319
Understanding Global Queues 319
Waiting for Worker Threads to Finish Thelr Work 329
Tracking a Dynamic Number of Worker Threads 336
Using Tasks Instead of Threads to Queue Jobs 340
Understanding the Relationship Between Tasks
and the Thread Pool . 343
Understanding Local Queues and the Work—Stealing Algorithm 347
Specifying a Custom Task Scheduler 353
Summary 359
CHAPTER 9: ASYNCHRONOUS PROGRAMMING MODEL 361
Mixing Asynchronous Programming with Tasks 362
Working with TaskFactory.FromAsync 363
Programming Continuations After Asynchronous Methods End 368
Combining Results from Multiple Concurrent
Asynchronous Operations 369
Performing Asynchronous WPF Ul Updates 37N
Performing Asynchronous Windows Forms Ul Updates 379
Creating Tasks that Perform EAP Operations 385
Working with TaskCompletionSource 394
Summary 398
CHAPTER 10: PARALLEL TESTING AND TUNING 399
Preparing Paraile| Tests 399
Working with Performance Profiling Features 404
Measuring Concurrency 406



Solutions to Common Patterns

416

Serialized Execution 16
Lock Contention 419
tock Convoys 420
Qversubscription 423
Undersubscription 426
Partitioning Problems 428
Workstation Garbage-Collection Overhead 431
Working with the Server Garbage Collector 434
/O Bottlenecks 434
Main Thread Overload 435
Understanding Faise Sharing 438
Summary 441
CHAPTER 11: VECTORIZATION, SIMD INSTRUCTIONS, AND
ADDITIONAL PARALLEL LIBRARIES 443
Understanding SIMD and Vectorization 443
From MMX to SSE4.x and AVX 446
Using the Intel Math Kernel Library 447
Working with Multicore-Ready, Highly Optimized Software Functlons 455
Mixing Task-Based Programming with External Optimized Libraries 456
Generating Pseudo-Random Numbers in Parallel 457
Using Intel Integrated Performance Primitives 461
Summary 468
APPENDIX A: .NET 4 PARALLELISM CLASS DIAGRAMS 469
Task Parallel Library 469
System.Threading.Tasks.Parallel Classes and Structures 489
Task Classes, Enumerations, and Exceptions 47
Data Structures for Coordination in Parallel Programming 472
Concurrent Collection Classes: System.Collections.Cencurrent 474
Lightwelight Synchronization Primitives 476
Lazy Initialization Classes 477
PLING 477
Threading 479
Thread and ThreadPool Classes and Their Exceptions 479
Signaling Classes 479
Threading Structures, Delegates, and Enumerations 480
BackgroundWorker Component 486



APPENDIX B: CONCURRENT UML MODELS 487
structure Diagrams 487
Class Diagram 487
component Diagram 489
Deployment Diagram 489
Package Diagram 489
Behavior Diagrams 489
Activity Diagram 49

lse Case Diagram 491

" Interaction Diagrams 493
Interaction Overview Diagram 493
Sequence Diagram 494
APPENDIX C: PARALLEL EXTENSIONS EXTRAS 497
Inspecting Parallel Extensions Extras 497
Coordination Data Structures 502
Extensions 507
Parallel Algorithms - 513
Partitioners 516
Task Schedulers 517

INDEX

521



