Contents

Viral Agents			
	1.1	Introd	uction1
	1.2		nato Strain of Cucumber Mosaic Virus, a Natural Reassortant
			en Subgroups IA and II5
	1.3		raceae Strain of Cucumber Mosaic Virus Infecting Pinellia
			e Suggested to be a Novel Class Unit Under Subgroup I10
		1.3.1	Phylogenetice and Sequence Divergence Analysis of 3a and
			CP ORFs15
		1.3.2	Phylogenetice and Sequence Divergence Analysis of 5' UTR
			and 3' UTR, 2a and 2b ORFs of RNA315
	1.4	The Po	otyvirus Infecting Pinellia ternata is a Recombinant Contributed
		by Soy	wbean Mosaic Virus and Lettuce Mosaic Virus17
		1.4.1	DAS-ELISA Analysis of Field Samples for Detecting the
			Potyvirus18
		1.4.2	Sequencing and Nucleotide Sequence Analysis of the Potyvirus
			Infecting Pinellia20
		1.4.3	Amino Acid Sequence Analysis for CP of the Potyvirus
			Infecting Pinellia22
		1.4.4	Nucleotide Sequence Analysis for CP N-terminal of the
			Potyvirus Infecting <i>Pinellia</i> 24
		1.4.5	Amino Acid Sequences for N-terminal and for the Conserved
			Region of the Potyvirus Infecting <i>Pinellia</i> 25
		1.4.6	Nucleotide Sequences for 3' UTR of the Potyvirus Infecting
			Pinellia27
		1.4.7	The General Character and Possible Origin of the Potyvirus
			Infecting <i>Pinellia</i> 27
	1.5		Terminal and a Single Nucleotide Determine the Accumulation
			cumber Mosaic Virus Satellite RNA31
		1.5.1	• •
			2msatRNA32

		1.5.2	Typical Structure at the 5° Terminal is Necessary for Long-
			distance Movement or High Accumulation of 2msatRNA34
		1.5.3	Low Accumulation of 2mF5sat Mutants is Related to Single
			Nucleotide Mutation36
		1.5.4	Secondary Structure of 2mF5sat Impaired its Replication
			Capacity
	1.6	Metho	dology40
		1.6.1	Purification of CMV Virions from Plant Tissue40
		1.6.2	RT-PCR and cDNA Cloning for Full-length Genomic RNAs
			of Cucumber Mosaic Virus41
		1.6.3	RT-PCR and Gene Cloning for 3'-end of Viral Genome of
			Soybean Mosaic Virus42
		1.6.4	Sequence Analysis and Phylogenetice Analysis
		1.6.5	Pseudo-recombination of Satellite RNA of Cucumber Mosaic
			Virus and the Helper Virus
	Refe	rences.	44
,	Mal	ocular l	Detection of Cucumber Mosaic Virus and Other RNA
-			sed on New Techniques47
	V 11 (ises Da	sed on New Techniques4/
	2.1		uction47
	2.2	*	lex RT-PCR System for Simultaneous Detection of Five
		Potato	Viruses51
		2.2.1	Comparison of 18S rRNA and nad2 mRNA as
			Internal Controls
		2.2.2	The Optimized System for Simultaneous Detection of Potato
			Viruses with Multiplex RT-PCR54
		2.2.3	Sensitivities of Multiplex RT-PCR and DAS-ELISA in
			Detecting Potato Viruses55
	2.3		ion of Cucumber Mosaic Virus Subgroups and Tobamoviruses
		Infecti	ng Tomato57
		2.3.1	Multiplex RT-PCR for Simultaneous Detection of Strains of
			CMV and ToMV in Tomato58
		2.3.2	Field Detection of Tomato Viruses by Multiplex RT-PCR62
		2.3.3	Identification of CMV Subgroups by Restriction Enzymes62
	2.4		rel Glass Slide Hybridization for Detecting Plant RNA Viruses
		and V	'iroids65
		2.4.1	Preparation of Highly Sensitive Fluorescent-labeled Probes66
		2.4.2	Effect of Spotting Solutions on Spot Quality67
		2.4.3	Effect of Glass Surface Chemistries on Efficiencies of RNA

			Binding	68	
		2.4.4	Detection Limits of Glass Slide Hybridization and Nylon		
			Membrane Hybridization	69	
		2.4.5	Specificity of Glass Slide Hybridization	71	
		2.4.6	Detection of PVY and PSTVd from Field Potato Samples	72	
	2.5	Quant	itative Determination of CMV Genome RNAs in Virions by		
		Real-t	ime RT-PCR	74	
		2.5.1	Optimization of Real-time RT-PCR and the Specificity	76	
		2.5.2	Quantification of CMV Genomic RNAs by RT-PCR and		
			Comparison of the Quantification with Lab-on-a-Chip and		
			Northern Blot Hybridization Assays	76	
	2.6	Accur	ate and Efficient Data Processing for Quantitative Real-time		
		PCR.		81	
		2.6.1	Quantification of CMV RNAs in Virions with Standard		
			Curves	82	
		2.6.2	Quantification of CMV RNAs in Virions by SCF	83	
		2.6.3	Quantification of CMV RNAs in Virions by LinReg PCR		
			and DART Programs	85	
		2.6.4	Determination of the Suppression Effect of Satellite RNA on		
			CMV Accumulation in Plant Tissues Using N ₀ Values	87	
	2.7	Metho	odology	88	
		2.7.1	Primers Design and Specificity Tests in RT-PCR	88	
		2.7.2	Comparison of 18S rRNA and nad2 mRNA as Internal		
			Controls	89	
		2.7.3	Optimization of Multiplex RT-PCR	90	
		2.7.4	Comparison of Sensitivities for Multiplex RT-PCR and		
			DAS-ELISA	91	
		2.7.5	Glass Slide Hybridization	91	
	Refe	erences		94	
3	T C.	_4•			
•			Clones and Chimerical Recombination of Cucumber Mosaic its Satellite RNAs		
	viri	anu	its Satellite Rivas	•••9/	
	3.1	Introduction			
	3.2	.2 Cucumber Mosaic Virus-mediated Regulation of Disease			
		Development Against Tomato Mosaic Virus in the Tomato			
		3.2.1	ToMV-N5 Initiated Necrosis on Tomato Can be Protected by		
			Previous Inoculation with Wild-type CMV	.100	
		3.2.2	ToMV-N5 Initiated Necrosis on Tomato Cannot be Protected		
			by Previous Inoculation with CMVΔ2b	.102	

		3.2.3	ToMV-N5-initiated Necrosis on Tomato Cannot be Protected	1
			by Previous Inoculation with Potato Virus X	103
		3.2.4	CMV-initiated Protection against ToMV-N5 is Related to the	e
			Replication and Accumulation of Challenging Virus	104
	3.3	Pseudo	o-recombination between Subgroups of Cucumber Mosaic	
		Virus]	Demonstrates Different Pathotypes and Satellite RNA	
		Suppo	rt Characters	105
		3.3.1	Wildtype and Pseudo-recombinants and with or without	
			satRNA Induce Different Symptoms on N. glutinosa	105
		3.3.2	Wildtype and Pseudo-recombinants with or without satRNA	
			Induce Different Symptoms on N. benthamiana	107
		3.3.3	Wildtype and Pseudo-recombinants with or without satRNA	
			Induce Different Symptoms on Tomato Varieties	108
		3.3.4	The Pathogenicity of Wildtype and Pseudorecombinants wit	h
			or without satRNA-Tsh are Related to Viral Accumulation.	110
	3.4	Synerg	gy via Cucumber Mosaic Virus and Zucchini Yellow Mosaic	
		Virus (on Cucurbitaceae Hosts	111
		3.4.1	Assessment of Symptom and Synergic Interaction by	
			Cucumber Mosaic Virus and Zucchini Yellow Mosaic Virus	112
		3.4.2	Accumulation Kinetics for CMV ORFs in Single or Comple	X
			Infection	113
		3.4.3	Accumulation Kinetics of ZYMV CP ORF in Single or	
			Complex Infection	116
	3.5	Metho	odology	117
		3.5.1	The Interaction Study on CMV and ToMV Interaction	
		3.5.2	Pseudo-recombination of CMV Subgroups	119
		3.5.3	Synergy between CMV and ZYMV on Cucurbitaceae	121
	Refe	rences		122
4	Con	o Funct	tion of Cucumber Mosaic Virus and its Satellite RNA	
•			Viral-host Interactions	125
	Iteg.	ii uing	THE HOST INCLECTORS	143
	4.1		uction	
	4.2 The 2b Protein of Cucumber Mosaic Virus is a Determinant		Protein of Cucumber Mosaic Virus is a Determinant of	
		Pathogenicity and Controls Symptom Expression		127
		4.2.1	Infectivity and Stability of Fny-CMV Derived Mutants	128
		4.2.2	Replacement of the 2b ORF Affected Capsidation of Viral	
			RNA 2	130
		4.2.3	Intraspecies Hybrid Viruses by Changing 2b Gene Induce	
			Different Virulence	132

		4.2.4	Divertive Virulence is Mediated by the 2b Protein Rather tha	ın
			by the C-terminal Overlapping Parts of the 2a Protein	132
		4.2.5	Virulence is Associated with the Accumulation of Viral	
			Progeny RNAs Affected by 2b Protein	134
	4.3	Functi	on of CMV 2b Protein and the C-terminus of 2a Protein in	
		Detern	nining Viral RNA Accumulation and Symptom Development	137
		4.3.1	The Systemic Necrosis-inducing Domain is Related to a	
			125-nucleotide Region of RNA 2	138
		4.3.2	Effect of 2b Protein Amino Acid 55 on Viral Accumulation	
			and Symptom Development	140
		4.3.3	Sequence Analyses of the 2b Proteins and the C-top of the	
			2a Proteins	141
		4.3.4	Effect of the C-terminus of 2a Protein on Symptom	
			Expression and Virus Accumulation	143
	4.4	Satelli	te RNA-mediated Reduction in Accumulation of CMV	
		Genon	nic RNAs in Tobacco Related to 2b Gene of the Helper	
		Virus.	; 	146
		4.4.1	Symptom Expression on N. Tabacum Inoculated with	
			CMV-Fsat	146
		4.4.2	Effect of satRs on the Accumulation of CMV-Fny Genomic	
			RNAs	148
		4.4.3	Symptom Expression on the Host Plants Inoculated with	
			CMV-FnyΔ2b	148
		4.4.4	Accumulation of CMV-FnyΔ2b Genomic RNAs and the	
			Effect of satRNAs	149
		4.4.5	Accumulation of CMV-Fny Genomic RNAs in the	
			Inoculated Leaves and the Effect of satRNAs	151
		4.4.6	The Effect of satRNAs on Long-distance Movement of	
			CMV-Fny Genomic RNAs	152
	4.5	Metho	odology	153
		4.5.1	Plants, Viruses and Plasmid Constructs	153
		4.5.2	Plant Inoculation and Viral Progeny RNA Analysis	158
		4.5.3	Quantifying the Accumulation of Viral RNAs in Leaf Tissue	159
	Refe	erences		159
5	Plar	ıt Micr	ORNAs and Their Response to Infection of Plant Viruses	163
	5.1		luction	
	5.2		odology	
	۷.∠	5.2.1	Computational Prediction of miRNAs and Their Target Gen	
		ا.⊿.1	Computational Frediction of milkings and Their Target Gen	Ų.o

		for Plant Species with Known Genome Sequences165		
	5.2.2	Use Plant miRNA Microwarrays to Identify Conservative		
		miRNAs from New Host Plants167		
	5.2.3	Use Plant miRNA Microarrays to Identify Conservative		
		miRNAs Response to Virus Infection		
	5.2.4	Quantitative Determination of miRNAs by Stem-loop		
		Real-time RT-PCR170		
	5.2.5	Design of Plant miRNA-array and Data Analysis173		
	5.2.6	Confirmation of miRNAs by Northern Blotting and Target		
		mRNA by 3'-RACE		
5.3	Toma	to miRNAs Predicted from Known Genomic Sequences and		
		vered by miRNA Microarray174		
	5.3.1	·		
		According to Known Genomic Sequences175		
	5.3.2	Potential Targets of Newly Predicted miRNAs and Their		
		Function		
	5.3.3	Confirmation of Tomato miRNAs Expression and Survey by		
		Microarray180		
5.4				
	Infection of ssRNA Viruses			
	5.4.1	Phenotype in Tomato Under Infection with CMV/satRNA		
		Combinations and ToMV186		
	5.4.2	Response of Tomato miRNA Expression to Virus Infection187		
	5.4.3	MiRNA Expression Profiles between CMV-Fny and		
		CMV-FnyΔ2b Infections		
	5.4.4	MiRNAs Expression Profiles Altered with Addition of		
		satRNAs194		
	5.4.5	A Comparison of miRNAs Expression Profiles between		
		CMV and ToMV Infections195		
5.5	Toma	to miRNA Response to Virus Infection Quantified by		
	Real-t	ime RT-PCR197		
	5.5.1	Identification of Tomato ARF8- and AGO1-like Genes199		
	5.5.2	Analytical Validation of Real-time RT-PCR for Amplification		
		of miRNAs200		
	5.5.3	Quantification of Tomato miRNAs Expression by Stem-loop		
		Real-time RT-PCR202		
	5.5.4	Quantification of miRNAs Targets in Tomato under		
		Cucumovirus Infection		
Refe	erences	206		

6.1 6.2		uction	011
6.2	Noval		211
	NOVE	dsRNA Viruses Infecting Raphanus sativus	212
	6.2.1	Yellow Edge Symptoms and dsRNA Patterns in the Radish.	213
	6.2.2	Genome Characterization of Raphanus sativus Cryptic	
		Virus 1	217
	6.2.3	Genome Characterization of Raphanus sativus Cryptic	
		Virus 2	222
	6.2.4	Correlation of Raphanus sativus Cryptic Virus 2 with	
		Raphanus sativus Cryptic Virus 1	224
	6.2.5	Genome Characterization of Suggested Raphanus sativus	
		Cryptic Virus 3	226
	6.2.6	The Possible Existence of More dsRNA Viruses in Radish	229
6.3	Doubl	e Stranded Viruses in Vicia faba	229
	6.3.1	Two dsRNA Viruses Infecting V. faba	230
	6.3.2	A Partitiviruss Infecting Aspergilus sp. Associated with Leaf	•
		Tissue of Vicia faba	237
6.4	A Nov	vel dsRNA Virus Infecting Primula malacoides Franch	243
6.5	Deriva	ation and Evolutionary Relationship of dsRNA Viruses	
	Infect	ing plants	249
6.6	Concl	usion	257
6.7	Metho	odology	258
	6.7.1	Plant Material and dsRNA Extraction	258
	6.7.2	Purification of Virus Particles	260
	6.7.3	Amplification of Unknown dsRNA Sequence by Modified	
		Single-primer Amplification Technique (SPAT)	260
	6.7.4	Sequence Analysis	
	6.7.5	Dot-Blot Hybridization	262
Refe	rences		