Lipids and Cellular Membranes in Amyloid Diseases

Contents

1	Interactions of $lpha$ -Synuclein with Lipids and
	Artificial Membranes Monitored by ESIPT Probes 1
	Volodymyr V. Shvadchak, Lisandro J. Falomir- Lockhart,
	Dmytro A. Yushchenko, and Thomas M. Jovin
1.1	Introduction to Parkinson's Disease and α-Synuclein 1
1.2	Structural Biology of α-Synuclein 4
1.3	Methods for Studying AS-Lipid Interactions 6
1.4	AS-Lipid Interactions 13
1.5	Interactions of Monomeric AS with Artificial Membranes
	Monitored with ESIPT Probes 15
1.5.1	Influence of Membrane Charge 16
1.5.2	Influence of Membrane Curvature 16
1.5.3	Influence of Membrane Phase 17
1.5.4	Influence of Acyl Chains 18
1.5.5	Influence of Cholesterol 19
1.5.6	Binding Kinetics 19
1.6	Aggregation of AS and the Effects of Fatty Acids Monitored
	with ESIPT Probes 21
1.7	Concluding Remarks 23
	References 23
2	Structural and Functional Insights into α -Synuclein–Lipid
	Interactions 33
	Martin Stöckl, Bart D. van Rooijen, Mireille M.A.E Claessens,
	and Vinod Subramaniam
2.1	Introduction 33
2.2	Interaction of α-Synuclein with Model Membrane Systems 35
2.2.1	Binding of α-Synuclein Species to Giant Unilamellar Vesicles 35
2.2.2	Model Membrane Permeabilization by α -Synuclein Oligomers 39
223	Structural Features of a-Synuclein Oligomers 41

VI	Contents	
	2.3	Biological Significance 45
	2.3.1	Interaction Sites 45
	2.3.2	Membrane Penetration 47
		References 49
	3	Surfactants and Alcohols as Inducers of Protein Amyloid: Aggregation Chaperones or Membrane Simulators? 57 Daniel E. Otzen
	3.1	Introduction 57
	3.2	Aggregation in the Presence of Surfactants 58
	3.2.1	General Aspects of Protein–Surfactant Interactions 58
	3.2.2	Effect of Surfactants on Protein Structure 60
	3.2.3	Stoichiometry of SDS Binding 61
	3.2.4	Aggregation of Proteins by SDS 61
	3.2.4.1	Αβ 63
	3.2.4.2	β_2 -Microglobulin and β_2 -Glycoprotein I 66
	3.2.4.3	Tau Protein 67
	3.2.4.4	Prion Protein 67
	3.2.4.5	Acyl CoA Binding Protein (ACBP) 68
	3.2.4.6	α-Synuclein (αSN) 69
	3.3	Palimpsests of Future Functions: Cytotoxic Protein–Lipid Complexes 72
	3.4	Aggregation in Fluorinated Organic Solvents 74
	3.4.1	Protein Examples 76
	3.4.1.1	Acyl Phosphatase 76
	3.4.1.2	β_2 -Microglobulin 76
	3.4.1.3	α-Chymotrypsin 77
	3.4.1.4	Alteration of Fibril Structure by TFE 77
	3.4.1.5	Other Proteins 78
	3.5	From Mimetics to the Real Thing: Aggregation on Lipids 78
	3.5.1	Binding Surfaces and High Local Concentrations 78
	3.5.2	Conformational Changes Associated with Binding 79
	3.5.3	Chemical Variability of the Lipid Environment 80
	3.6	Summary 81
		References 82
	4	Interaction of hIAPP and Its Precursors with
		Model and Biological Membranes 93
		Katrin Weise, Rajesh Mishra, Suman Jha, Daniel Sellin,
		Diana Radovan, Andrea Gohlke, Christoph Jeworrek, Janine Seeliger,
		Simone Möbitz, and Roland Winter
	4.1	Introduction 93
	4.2	Results 95
	4.2.1	The Conformations of Native proIAPP and hIAPP in Bulk Solution 95

4.2.2	Fibrillation Kinetics and Conformational Changes of hIAPP and proIAPP in the Presence of Anionic Lipid Bilayers 96
4.2.3	Effect of the Membrane-Mimicking Anionic Surfactant SDS on the Amyloidogenic Propensity of hIAPP
	and proIAPP 102
4.2.4	hIAPP and proIAPP Aggregation and Fibrillation at Neutral Lipid Bilayers and Heterogeneous Model Raft Mixtures 105
4.2.5	Comparison with Insulin–Membrane Interaction Studies 111
4.2.6	Cytotoxicity of hIAPP 112
4.3	Conclusions 115
	References 117
5	Amyloid Polymorphisms: Structural Basis and Significance in Biology and Molecular Medicine 121
	Massimo Stefani
5.1	Introduction 121
5.2	Only Generic Data Are Currently Available on the
	Structural Features of Amyloid Oligomers 124
5.3	The Plasma Membrane Can Be a Primary Site of
- 4	Amyloid Oligomer Generation and Interaction 127
5.4	Oligomer/Fibril Polymorphism Can Underlie
	Amyloid Cytotoxicity 129
5.5	Amyloid Oligomers Grown Under Different Conditions
	Can Display Variable Cytotoxicity by Interacting in Different Ways with the Cell Membranes 132
5.6	Different Ways with the Cell Membranes 132 Conclusions 135
5.0	References 136
6	Intracellular Amyloid β: a Modification to the Amyloid Hypothesis
	in Alzheimer's Disease 143
	Yan Zhang
6.1	Introduction 143
6.2	Evidence for the Presence of Intracellular Amyloid 144
6.2.1	Detection of Intracellular Amyloid 144
6.2.2	Neurotoxicty of Intracellular Amyloid 145
6.2.3	Possible Mechanisms of Intracellular Amyloid Toxicity 146
6.3	Sources of Intracellular Amyloid 146
6.4	Relationship Between Intracellular and Extracelluar
<i>(</i>	Amyloid 148
6.5	Prevention of Intracellular Amyloid Toxicity 149
6.6	Concluding Remarks 149
6.7	Disclosure Statement 150
	References 150

7	Lipid Rafts Play a Crucial Role in Protein Interactions and Intracellular Signaling Involved in Neuronal Preservation Agains Alzheimer's Disease 159
	Raquel Marin
7.1	Lipid Rafts: Keys to Signaling Platforms in Neurons 159
7.2	Estrogen Receptors Are Part of Signaling Platforms in Neuronal Rafts 163
7.3	Role of Lipid Raft ERα–VDAC Interactions in Neuronal Preservation Against Aβ Toxicity 164
7.4	Disruption of ERα–VDAC Complex in AD Brains 167
7.5	Future Studies 169 References 169
8	Alzheimer's Disease as a Membrane-Associated Enzymopathy of β-Amyloid Precursor Protein (APP) Secretases 177 Saori Hata, Yuhki Saito, and Toshiharu Suzuki
8.1	Introduction 177
8.1.1	Cholesterol and Alzheimer's Disease Pathogenesis 180
8.1.2	ApoE, Lipoprotein Receptors and Alzheimer's Disease 181
8.1.2.1	LRP1 and LRP1B 182
8.1.2.2	SorLA/LR11 182
8.1.2.3	ApoER2/LRP8 183
8.1.3	Lipid Rafts and Alzheimer's Disease 183
8.1.3.1	APP-Cleaving Enzyme and Lipid Rafts 183
8.1.3.2	APP, X11 Family Proteins, and Lipid Rafts 184
8.2	Intramembrane-Cleaving Enzyme of Type I Membrane
	Proteins 186
8.2.1	γ-Secretase 186
8.2.2	γ-Secretase and Cholesterol 186
8.3	Alcadein Processing by γ-Secretase in Alzheimer's Disease 187
8.3.1	Alcadein as a γ-Secretase Substrate in Neurons 187
8.3.2	Alcadein Processing and γ-Secretase Dysfunction 188
	References 190
9	Impaired Regulation of Glutamate Receptor Channels and Signaling Molecules by β -Amyloid in Alzheimer's Disease 195 Zhen Yan
9.1	Introduction 195
9.2	AMPAR-Mediated Synaptic Transmission and Ionic Current
	are Impaired by Aβ 195
9.3	CaMKII is Causally Involved in Aβ Impairment of AMPAR Trafficking and Function 196
9.4	PIP2 Regulation of NMDAR Currents is Lost by Aβ 197
9.5	The Effect of AChE Inhibitor on NMDAR Response is
	Impaired in APP Transgenic Mice 199

9.6	Aβ Impairs PKC-Dependent Signaling and Functions 201
9.7	Conclusion 202
	References 203
10	Membrane Changes in BSE and Scrapie 207
	Cecilie Ersdal, Gillian McGovern, and Martin Jeffrey
10.1	Prion Diseases 207
10.2	The Cellular Prion Protein (PrP ^c) and Conversion to
	Disease-Associated Prion Protein (PrP ^d) 207
10.3	PrP ^d Accumulation in the Central Nervous System and
	Lymphatic Tissues 210
10.4	Aberrant Endocytosis and Trafficking of PrPd in Neurons
	and Tingible Body Macrophages 213
10.5	Abnormal Maturation Cycle and Immune Complex Trapping
	of Follicular Dendritic Cells in Lymphoid Germinal Centers 217
10.6	Molecular Changes of Plasma Membranes Associated with
	PrP ^d Accumulation 219
10.7	Transfer of PrP ^d Between Cells 220
10.8	Extracellular Amyloid Form of PrP ^d 221
10.9	Strain-Directed Effects of Prion Infection 222
10.10	Conclusion and Perspectives 222
10.11	Summary 223
	References 223
11	Interaction of Alzheimer Amyloid Peptide with Cell Surfaces
11	and Artificial Membranes 231
	David A. Bateman and Avijit Chakrabartty
11.1	Introduction 231
11.2	Comparison of the Neurotoxicity of Oligomeric and Fibrillar
11.2	Alzheimer Amyloid Peptides 232
11.3	Aβ Oligomerization at the Cell Surface 233
11.4	Catalysis of Aβ Oligomerization by the Cell Surface 234
11.5	Type of Aβ Complexes that Form on the Cell Surface 234
11.6	Association of Alzheimer Amyloid Peptides with Lipid Particles 238
11.7	Future Directions 238
	References 239
12	Experimental Approaches and Technical
	Challenges for Studying Amyloid–Membrane Interactions 245
	Raz Jelinek and Tania Sheynis
12.1	Introduction 245
12.2	Unilamellar Vesicles and Micelles 246
12.2.1	Fluorescence spectroscopy 246
12.2.2	Fluorescence microscopy 248
12.2.3	Nuclear magnetic resonance 249

X Contents 12.2.4 Electron paramagnetic resonance 250 12.2.5 Other experimental techniques 251 12.3 Black Lipid Membranes 252 12.4 Langmuir Monolayers 253 12.5 Solid-Supported Bilayers 255

Challenges and Future Work 261

Other Techniques 259

References 263

Index 271

12.6

12.7