Arvid R. Eide Roland D. Jenison Larry L. Northup Steven K. Mickelson

Sixth Edition

ENGINEERING

FUNDAMENTALS AND PROBLEM SOLVING

This
International
Student Edition
is for use
outside
the U.S.

McGRAW-HILL INTERNATIONAL EDITION

Contents

1.1

The Engineering Profession 1

An Engineering Career 1

	1.2	The Technology Team 3				
	1.3 The Engineering Profession 6					
	1.4	The Engineering Functions 7				
	1.5	The Engineering Disciplines 20				
	1.6	Conclusion 36				
2	2 Education for Engineering 39					
	2.1	Education for Engineering 39				
	2.2 The Engineer as a Professional 47					
	2.3	Conclusion 50				
3	3 Introduction to Engineering Design 53					
	3.1	An Introduction to Engineering Design 53				
	3.2	The Design Process 55				
	3.3	Design and the Customer 59				
	3.4	The Nature of Engineering Design 60				
	3.5	Experiencing the Design Process in Education 62				
	3.6	Design Opportunities and Challenges of the Future 62				
	-	transfer Oct III				
4	⊨ng	ineering Solutions 73				
	4.1	Introduction 73				
	4.2	Problem Analysis 73				
	4.3	The Engineering Method 75				
	4.4	Problem Presentation 76				
	4.5	Standards of Problem Presentation 77				
5	Bon	resentation of Technical Information 95				
•	Representation of Technical Information 95					
	5.1	Introduction 95				
	5.2 Collecting and Recording Data 100					
	5.3	General Graphing Procedures 102				
	5.4	Empirical Functions 114				
	5.5	Curve Fitting 114				
	5.6	Method of Selected Points and Least Squares 115				

iv Contents		5.7 5.8	Empirical Equations: Linear 115 Empirical Equations: Power Curves 117
		5.9	Empirical Equations: Exponential Curves 122
	6	Engi	neering Measurements and Estimations 135
		6.1	Introduction 135 Measurements: Accuracy and Precision 135
		6.3 6.4	Measurements: Significant Digits 137 Errors 142
		6.5	Estimations 144
	7	Dime	ensions, Units, and Conversions 155
•		7.1	Introduction 155
		7.2	Progress in the United States toward Metrification
		7.3	Physical Quantities 157
		7.4	Dimensions 158
		7.5	Units 159
		7.6	SI Units and Symbols 160
		7.7	Rules for Using SI Units 164
		7.8	U.S. Customary and Engineering Systems 169
		7.9	Conversion of Units 171
		7.10	Celsius, Fahrenheit, and Absolute Scales 174
	8	Intro	duction to Engineering Economics 181
		8.1	Introduction 181
		8.2	Simple and Compound Interest 182
		8.3	Cash-Flow Diagram 188
		8.4	Present Worth and Future Worth 189
		8.5	Annual Worth and Gradients 193

156

9 Economics: Decision Making 223

Summary Table 215

- 9.1 Economic Decision Making 223
- 9.2 Depreciation and Taxes 228

10 Statistics 231

8.6

- 10.1 Introduction 231
- 10.2 Frequency Distribution 232
- 10.3 Measures of Central Tendency 234
- 10.4 Measures of Variation 236
- 10.5 Linear Regression 242
- 10.6 Coefficient of Correlation 248

11 Infer	ential Statistics and Decision Making 263	
11.2 11.3 11.4	Inferential Statistics 263 Experimental Design 264 Sampling 265 Use of Various Distributions 266 Level of Significance and Confidence Intervals	273
12.1	hanics: Statics 277 Introduction 277 Scalars and Vectors 280	

- 12.3 Forces 281
- 12.4 Types of Force Systems 281
- 12.5 Transmissibility 282
- 12.6 Resolution of Forces 283
- 12.7 Moments and Couples 287
- 12.8 Free-Body Diagrams 290
- 12.9 Equilibrium 292

13 Mechanics: Strength of Materials 307

- 13.1 Introduction 307
- 13.2 Stress 307
- 13.3 Strain 309
- 13.4 Modulus of Elasticity 311
- 13.5 Design Stress 312

14 Material Balance 321

- 14.1 Introduction 321
- 14.2 Conservation of Mass 321
- 14.3 Processes 325
- 14.4 A Systematic Approach 327

15 Energy Sources and Alternatives 339

- 15.1 Introduction 339
- 15.2 Fossil Fuels 340
- 15.3 Finite Supply of Fossil Fuels 341
- 15.4 Major Areas of Energy Consumption in the United States 346
- 15.5 Alternate Energy Sources 350

16 Fundamental Energy Principles 359

- 16.1 Introduction to Thermodynamics 359
- 16.2 Stored Energy 359
- 16.3 Energy in Transit 362

vi	
Carebaraka	

- 16.4 First Law of Thermodynamics: The Conservation of Energy 365
- 16.5 Second Law of Thermodynamics 369
- 16.6 Efficiency 370
- 16.7 Power 373
- 16.8 Refrigeration Cycles 375

17 Electrical Theory 379

- 17.1 Introduction 379
- 17.2 Structure of Electricity 380
- 17.3 Static Electricity 381
- 17.4 Electric Current 381
- 17.5 Electric Potential 382
- 17.6 Simple Electric Circuits 382
- 17.7 Resistance 383
- 17.8 DC Circuit Concepts 384
- 17.9 DC Electric Power 390
- 17.10 Terminal Voltage 392
- 17.11 Kirchhoff's Laws 394
- 17.12 Mesh Currents 399

Appendixes

A. Part 1 Unit Conversions 411

Part 2 Unit Prefixes 417

Part 3 Physical Constants 418

Part 4 Approximate Specific Gravities and Densities 419

- B. Greek Alphabet 421
- C. Chemical Elements 422
- D. NSPE Code of Ethics for Engineers 425
- E. Flowcharts 430
- F. Part 1 Selected Algebra Topics 445 Part 2 Selected Trigonometry Topics 453

Answers to Selected Problems 467 Credits 475 Index 477