CONTENTS

Preface to the Third Edition ix Acknowledgments xi	Nomenclature 66 References 68 Review Questions 69
1 Introduction 1	Problems 70
Motivation to Study Combustion 1 A Definition of Combustion 8	3 Introduction to Mass Transfer 79
Combustion Modes and Flame Types 9	Overview 79
Approach to Our Study 10	Rudiments of Mass Transfer 79
References 11	Mass Transfer Rate Laws 80 Species Conservation 86
2 Combustion and Thermochemistry 12	Some Applications of Mass Transfer 88 The Stefan Problem 88
Overview 12 Review of Property Relations 12	Liquid-Vapor Interface Boundary Conditions 90
Extensive and Intensive Properties 12	Droplet Evaporation 94
Equation of State 13	Summary 101 Nomenclature 101
Calorific Equations of State 13	References 103
Ideal-Gas Mixtures 15	Review Questions 103
Latent Heat of Vaporization 18 First Law of Thermodynamics 18	Problems 104
First Law—Fixed Mass 18	
First Law—Control Volume 20	4 Chemical Kinetics 107
Reactant and Product Mixtures 21	Overview 107
Stoichiometry 21	Global Versus Elementary Reactions 107
Standardized Enthalpy and Enthalpy of Formation 26	Elementary Reaction Rates 109
Enthalpy of Combustion and Heating	Bimolecular Reactions and Collision Theory 109
Values 29	Other Elementary Reactions 114
Adiabatic Flame Temperatures 33	Rates of Reaction For Multistep Mechanisms 115
Chemical Equilibrium 38	Net Production Rates 115 Compact Notation 116
Second-Law Considerations 38	Relation Between Rate Coefficients and
Gibbs Function 40	Equilibrium Constants 118
Complex Systems 46 Equilibrium Products of Combustion 46	Steady-State Approximation 120
Full Equilibrium 46	The Mechanism for Unimolecular Reactions 121
Water-Gas Equilibrium 49	Chain and Chain-Branching Reactions 123 Chemical Time Scales 129
Pressure Effects 52	Partial Equilibrium 133
Some Applications 53	Reduced Mechanisms 135
Recuperation and Regeneration 53	Catalysis and Heterogeneous Reactions 136
Flue- (or Exhaust-) Gas Recirculation 59	Surface Reactions 136
Summary 66	Complex Mechanisms 138

 among Mass Fractions, Mole Fractions, Molar Concentrations, and Mixture Molecular Weights 218 7 Simplified Conservation Equations Reacting Flows 220
-
Overview 220 Overall Mass Conservation (Continuity) 221 Species Mass Conservation (Species
Continuity) 223 Multicomponent Diffusion 226 General Formulations 226 Calculation of Multicomponent Diffusion Coefficients 228 Simplified Approach 231
Momentum Conservation 233 One-Dimensional Forms 233 Two-Dimensional Forms 235 Energy Conservation 239 General One-Dimensional Form 239 Shvab-Zeldovich Forms 241 Useful Form for Flyma Columbiance 245
Useful Form for Flame Calculations 245 The Concept of a Conserved Scalar 245 Definition of Mixture Fraction 246 Conservation of Mixture Fraction 247
Conserved Scalar Energy Equation 251 Summary 252 Nomenclature 252 References 254 Review Questions 255
Problems 255 8 Laminar Premixed Flames 258
Overview 258 Physical Description 259 Definition 259
Principal Characteristics 259 Typical Laboratory Flames 261 Simplified Analysis 266 Assumptions 266 Conservation Laws 266 Solution 269

for

Contents xv

Detailed Analysis 273	Summary 356
Governing Equations 274	Nomenclature 357
Boundary Conditions 274	Reference 359
Structure of CH ₄ –Air Flame 276	Review Questions 362
Factors Influencing Flame Velocity	Problems 363
and Thickness 279	1100icms
Temperature 279	10 Droplet Evaporation and Burning 366
Pressure 280	Diopict Evaporation and Durning 500
Equivalence Ratio 280	Overview 366
Fuel Type 282	Some Applications 366
Flame Speed Correlations for Selected	Diesel Engines 367
Fuels 285	Gas-Turbine Engines 369
Quenching, Flammability, and Ignition 287	Liquid-Rocket Engines 371
Quenching by a Cold Wall 287	Simple Model of Droplet Evaporation 374
Flammability Limits 293	Assumptions 375
Ignition 295	Gas-Phase Analysis 376
Flame Stabilization 300	Droplet Lifetimes 380
Summary 303	Simple Model of Droplet Burning 383
Nomenclature 304	Assumptions 383
References 305	Problem Statement 385
Review Questions 307	Mass Conservation 385
Problems 308	Species Conservation 385
1 Toblems 500	Energy Conservation 388
Laminar Diffusion Flames 311	Summary and Solution 394
4 Lammar Diffusion Frames 311	Burning Rate Constant and Droplet
Overview 311	Lifetimes 395
Nonreacting Constant-Density Laminar Jet 312	Extension to Convective Environments 400
Physical Description 312	Additional Factors 402
Assumptions 313	One-Dimensional Vaporization-Controlled
Conservation Laws 314	Combustion 403
Boundary Conditions 314	Physical Model 404
Solution 315	Assumptions 405
Jet Flame Physical Description 320	Mathematical Problem Statement 405
Simplified Theoretical Descriptions 323	Analysis 406
Primary Assumptions 323	Model Summary 412
Basic Conservation Equations 324	Summary 416
Additional Relations 325	Nomenclature 417
Conserved Scalar Approach 325	References 419
Various Solutions 332	Problems 422
Flame Lengths for Circular-Port	Projects 423
and Slot Burners 336	Appendix 10A—Sir Harry R. Ricardo's
Roper's Correlations 336	Description of Combustion in Diesel
Flowrate and Geometry Effects 340	Engines [51] 425
Factors Affecting Stoichiometry 341	
Soot Formation and Destruction 346	11 Introduction to Turbulent Flows 427
Counterflow Flames 350	
Mathematical Description 351	Overview 427
Structure of CH ₄ -Air Flame 353	Definition of Turbulence 428

xvi Contents

Length Scales in Turbulent Flows 431	Nomenclature 519
Four Length Scales 431	References 520
Turbulence Reynolds Numbers 433	Review Questions 524
Analyzing Turbulent Flows 437	Problems 525
Reynolds Averaging and Turbulent Stresses 438	
The Closure Problem 440	14 Burning of Solids 527
Axisymmetric Turbulent Jet 444	0 : 527
Beyond the Simplest Model 447	Overview 527
Summary 448	Coal-Fired Boilers 527
Nomenclature 449	Heterogeneous Reactions 529
References 450	Burning of Carbon 530
Questions and Problems 452	Overview 531
	One-Film Model 532
12 Turbulent Premixed Flames 453	Two-Film Model 543
0 : 453	Particle Burning Times 550
Overview 453	Coal Combustion 551
Some Applications 453	Other Solids 551
Spark-Ignition Engines 453	Summary 552
Gas-Turbine Engines 454	Nomenclature 552
Industrial Gas Burners 455	References 553
Definition of Turbulent Flame Speed 457	Questions and Problems 554
Structure of Turbulent Premixed Flames 459	Emissions FF6
Experimental Observations 459	15 Emissions 556
Three Flame Regimes 460	Overview 556
Wrinkled Laminar-Flame Regime 465	Effects of Pollutants 557
Distributed-Reaction Regime 470	Quantification of Emissions 559
Flamelets-in-Eddies Regime 472	Emission Indices 559
Flame Stabilization 474	Corrected Concentrations 561
Bypass Ports 474	Various Specific Emission Measures 564
Burner Tiles 475	Emissions from Premixed Combustion 565
Bluff Bodies 475	Oxides of Nitrogen 565
Swirl or Jet-Induced Recirculating Flows 477	Carbon Monoxide 573
Summary 478	Unburned Hydrocarbons 575
Nomenclature 479	Catalytic Aftertreatment 576
References 480	Particulate Matter 576
Problems 483	Emissions from Nonpremixed
13 Turbulent Nonpremixed Flames 486	Combustion 578
13 Turbulent Nonpremixed Flames 486	Oxides of Nitrogen 579
Overview 486	Unburned Hydrocarbons and Carbon
Jet Flames 489	Monoxide 593
General Observations 489	Particulate Matter 595
Simplified Analysis 494	Oxides of Sulfur 597
Flame Length 500	Greenhouse Gases 598
Flame Radiation 506	Summary 601
Liftoff and Blowout 510	Nomenclature 602
Other Configurations 515	References 603
Summary 519	Ouestions and Problems 612

Contents xvii

Alternative Fuels 667

Hydrogen 678

Fischer-Tropsch Liquid Fuels 677

Definition 616 Summary 679 Principal Characteristics 617 Nomenclature and Abbreviations 679 One-Dimensional Analysis 618 References 680 Assumptions 618 Problems 685 Conservation Laws 619 Combined Relations 620 Appendix A Selected Thermodynamic Detonation Velocities 626 **Properties of Gases Comprising** Structure of Detonation Waves 630 C-H-O-N System 686 Summary 635 Nomenclature 635 Appendix B Fuel Properties 700 References 636 Problems 637 Appendix C Selected Properties of Air, 17 Fuels 638 Nitrogen, and Oxygen 704 Overview 638 Naming Conventions and Molecular Appendix D Binary Diffusion Structures 638 Coefficients and Methodology for Hydrocarbons 638 their Estimation 707 Alcohols 642 Other Organic Compounds 642 Appendix E Generalized Newton's Important Properties of Fuels 644 Ignition Characteristics 644 Method for the Solution of Volatility 646 Nonlinear Equations 710 Energy Density 647 Conventional Fuels 648 Appendix F Computer Codes for Equilibrium Gasoline 648 Diesel Fuels 654 Products of Hydrocarbon-Air Heating Oils 654 Combustion 713 Aviation Fuels 655 Natural Gas 657 Index 715 Coal 662

16 Detonations 616

Physical Description 616

Overview 616