Renaud Gicquel

ENERGY SYSTEMS

A New Approach to Engineering Thermodynamics

With access to the Thermoptim[™] Software

Contents

Searching References in the Thermoptim Unit							
		by John W. Mitchell	xxv				
	Foreword by Alain Lambotte						
	About the Author						
	General introduction						
į	Structure of the book						
	Objectives of this book						
	-	ging tool on many levels	xxxiv				
Mi	nd Ma	ps	xxxv				
Lis	t of Sy	mbols	xli				
		on Factors	xlix				
1	Firs	t Steps in Engineering Thermodynamics	1				
ı	A Ne	w Educational Paradigm	3				
	1.1	Introduction	3				
	1.2	General remarks on the evolution of training specifications	4				
	1.3	Specifics of applied thermodynamics teaching	4				
	1.4	A new educational paradigm	5 7				
	1.5	Diapason modules					
	1.6	A three-step progressive approach	9				
	1.7	Main pedagogic innovations brought by Thermoptim	10				
	1.8	Digital resources of the Thermoptim-UNIT portal	10				
	1.9	Comparison with other tools with teaching potential	11				
		Conclusion	12				
	Refe	rences	12				
2	First	Steps in Thermodynamics: Absolute Beginners	13				
	2.1	Architecture of the machines studied	13				
		2.1.1 Steam power plant	13				
		2.1.2 Gas turbine	14				
		2.1.3 Refrigeration machine	15				
	2.2	Four basic functions	$_{1}$ 16				
	2.3	Notions of thermodynamic system and state	17				
	2.4	Energy exchange between a thermodynamic system and its surroundings	17				
	2.5	Conservation of energy: first law of thermodynamics	17				
	2.6	Application to the four basic functions previously identified	18				
		2.6.1 Compression and expansion with work	18				
		2.6.2 Expansion without work: valves, filters	19				
		2.6.3 Heat exchange	19				
		2.6.4 Combustion chambers, boilers	19				
	2.7	Reference processes	19				
		2.7.1 Compression and expansion with work	19				
		2.7.2 Expansion without work: valves, filters	20				
		2.7.3 Heat exchange	20				
		2.7.4 Combustion chambers, boilers	20				

2.9 Return to the concept of state and choice of state variables to consider 2.10 Thermodynamic charts 2.10.1 Different types of charts 2.10.2 (h, ln(P)) chart 2.11 Plot of cycles in the (h, ln(P)) chart 2.11.1 Steam power plant 2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems-analysis of energy technologies 4.3.3 Component modeling 4.3.4 Thermoptim primitive types	20
2.10.1 Different types of charts 2.10.2 (h, ln(P)) chart 2.11.1 Plot of cycles in the (h, ln(P)) chart 2.11.1 Steam power plant 2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	21
2.10.2 (h, ln(P)) chart 2.11. Plot of cycles in the (h, ln(P)) chart 2.11.1 Steam power plant 2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4. Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	21
 2.11 Plot of cycles in the (h, ln(P)) chart 2.11.1 Steam power plant 2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	22
2.11.1 Steam power plant 2.11.2 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3. First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	22
2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	23
2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	24
2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	26
2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	29
2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	30
2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	31
3. First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	31
 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion Methodology, Thermodynamics Fundamentals, Thermoptim, Components Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	32
 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	35
3.3. Second law of thermodynamics 3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	35
3.3.1 Limits of the first law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	36
3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	37
3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	37
3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	37
 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	37
 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	38
3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	38
3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	40
3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	41
 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	41
the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	41
3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	
3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	41
3.7.3 Refrigeration machine 3.8 Conclusion 2 Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	41
 Methodology, Thermodynamics Fundamentals, Thermoptim, Components Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	43
 Methodology, Thermodynamics Fundamentals, Thermoptim, Components Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	44
Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	45
Components 4 Introduction 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling	
 4.1 A two-level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	47
 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	49
 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	49
 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	49
 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	50
 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	51
 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 	52
4.3.1 Systems modeling: the General System4.3.2 Systems-analysis of energy technologies4.3.3 Component modeling	54
4.3.2 Systems-analysis of energy technologies4.3.3 Component modeling	54
4.3.3 Component modeling	55
•	56
1 1 /1	57
4.3.5 Thermoptim assets	62
References	62

5 T	hermody	namics Fundamentals	63			
5.1 Basic concepts, definitions			63			
	5.1.1	Open and closed systems	64			
	5.1.2	State of a system, intensive and extensive quantities	65			
	5.1.3	Phase, pure substances, mixtures	66			
	5.1.4	Equilibrium, reversible process	66			
	5.1.5		66			
	5.1.6	Symbols	67			
5	.2 Ener	gy exchanges in a process	67			
	5.2.1	Work δW of external forces on a closed system	67			
	5.2.2	Heat transfer	68			
5	.3 First	law of thermodynamics	69			
	5.3.1	Definition of internal energy U (closed system)	70			
	5.3.2	Application to a fluid mass	70			
	5.3.3	Work provided, shaft work τ	71			
	5.3.4	Shaft work and enthalpy (open systems)	73			
	5.3.5		74			
	5.3.6	Application to industrial processes	75			
5	.4 Secon	nd law of thermodynamics	76			
	5.4.1	Definition of entropy	77			
	5.4.2	- '	78			
	5.4.3	Carnot effectiveness of heat engines	79			
	5.4.4		81			
	5.4.5	Thermodynamic potentials	82			
5	.5 Exer	Exergy				
	5.5.1	Presentation of exergy for a monotherm open system in				
		steady state	84			
	5.5.2	Multithermal open steady-state system	85			
	5.5.3	Application to a two-source reversible machine	86			
	5.5.4	Special case: heat exchange without work production	86			
	5.5.5	Exergy efficiency	86			
5	.6 Repr	resentation of substance properties	87			
	5.6.1	Solid, liquid, gaseous phases	87			
	5.6.2	Perfect and ideal gases	88			
	5.6.3	Ideal gas mixtures	93			
	5.6.4	Liquids and solids	95			
	5.6.5	Liquid-vapor equilibrium of a pure substance	96			
	5.6.6	Representations of real fluids	97			
	5.6.7	Moist mixtures	117			
	5.6.8	Real fluid mixtures	124			
F	References	S	136			
F	Further re	eading	136			
6 F	resentat	ion of Thermoptim	137			
ϵ	5.1 Gene	eral	137			
	6.1.1	Initiation applets	138			
	6.1.2	Interactive charts	139			
	6.1.3	Thermoptim's five working environments	139			
ϵ	5.2 Diag	gram editor	142			
	6.2.1	Presentation of the editor	142			
(C					

		6.2.2	Graphical component properties	142
		6.2.3	Links between the simulator and the diagrams	144
	6.3	Simul	lation environment	146
		6.3.1	Main project screen	146
		6.3.2	Main menus	148
		6.3.3	Export of the results in the form of text file	149
		6.3.4	Point screen	149
		6.3.5	Point moist properties calculations	153
		6.3.6	Node screen	155
	6.4	Exten	nsion of Thermoptim by external classes	157
		6.4.1	Extension system for Thermoptim by adding external	
			classes	157
			Software implementation	158
			Viewing available external classes	159
		6.4.4	Representation of an external component in the	
			diagram editor	160
		6.4.5	Loading an external class	160
			Practical realization of an external class	160
	6.5	Diffe	rent versions of Thermoptim	161
7	Basi	ic Com	ponents and Processes	163
	7.1		pressions	163
		7.1.1	Thermodynamics of compression	164
		7.1.2	Reference compression	164
		7.1.3	Actual compressions	166
			Staged compression	174
		7.1.5	Calculation of a compression 🚨 in Thermoptim	175
	7.2	Displ	acement compressors	177
		7.2.1	Piston compressors	177
			Screw compressors	182
		7.2.3	1	185
	7.3	•	nmic compressors	185
		7.3.1	General	185
			Thermodynamics of permanent flow	186
			Similarity and performance of turbomachines	192
			Practical calculation of dynamic compressors	197
		7.3.5	1	199
	7.4		parison of the various types of compressors	199
		7.4.1	Comparison of dynamic and displacement compressors	199
		7.4.2	Comparison between dynamic compressors	200
	7.5		nsion	201
		7.5.1	\$650 MeV	201
			Calculation of an expansion in Thermoptim	203
		7.5.3		203
		7.5.4	1	204
	,	7.5.5	· · · · · · · · · · · · · · · · · · ·	205
	7.6		bustion	206
		7.6.1	,	206
		7.6.2	· · · · · · · · · · · · · · · · · · ·	213 216
		7.0.3	Study of incomplete combustion	7.10

	7.6.4	Energy properties of combustion reactions	225
	7.6.5	Emissions of gaseous pollutants	234
	7.6.6	Calculation of combustion 📟 in Thermoptim	235
	7.6.7	Technological aspects	239
7.7	Thro	ttling or flash	241
7.8		r vapor/gas mixtures processes	242
	7.8.1	Moist process screens	242
	7.8.2	Moist mixers	243
	7.8.3	Heating a moist mixture	245
	7.8.4	Cooling of moist mix	245
	7.8.5	Humidification of a gas	248
	7.8.6	Dehumidification of a mix by desiccation	251
	7.8.7	Determination of supply conditions	253
	7.8.8	Air conditioning processes in a psychrometric chart	255
7.9	Exan	nples of components represented by external classes	256
	7.9.1	Nozzles	256
	7.9.2	Diffusers	260
	7.9.3	Ejectors	264
Refe	erences		268
Fur	ther rea	ading	269
Hea	t Exch	angers	271
8.1	Princ	ciples of operation of a heat exchanger	271
	8.1.1	Heat flux exchanged	273
	8.1.2	Heat exchange coefficient U	274
	8.1.3	Fin effectiveness	275
	8.1.4	Values of convection coefficients h	275
8.2	Phen	omenological models for the calculation of heat	
	excha	angers	276
	8.2.1	Number of transfer units method	276
	8.2.2	Relationship between NTU and ϵ	278
	8.2.3	Matrix formulation	282
	8.2.4	o	283
	8.2.5	Relationship with the LMTD method	287
	8.2.6	Heat exchanger pinch	287
8.3	Calcı	ulation of heat exchangers in Thermoptim	288
	8.3.1	"Exchange" 🌺 🔊 processes	288
	8.3.2	Creation of a heat exchanger in the diagram editor	289
	8.3.3	Heat exchanger screen	290
	8.3.4	Simple heat exchanger design	290
	8.3.5	Generic liquid	292
	8.3.6	Off-design calculation of heat exchangers	292
	8.3.7	Thermocouplers	294
8.4	Tech	nological aspects	296
	8.4.1	Tube exchangers	296
	8.4.2	Plate heat exchangers	297
	8.4.3	Other types of heat exchangers	298
8.5	Sum	mary	299
Refe	erences	3	299
Fur	ther re	ading	299

8

9.1. Steam power plant cycle 301 9.1.1 Principle of the machine and problem data 301 9.1.2 Creation of fine diagram 302 9.1.3 Creation of simulator elements 306 9.1.4 Setting points 307 9.1.5 Setting of processes 308 9.1.6 Plotting the cycle on thermodynamic chart 309 9.1.7 Design of condenser 311 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2. Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4. Air conditioning installation 335 9.4. Principle of installation and problem	9	Exam	ples of	Applications	301
9.1.2 Creation of the diagram 302 9.1.3 Creation of simulator elements 306 9.1.4 Setting points 307 9.1.5 Setting of processes 308 9.1.6 Plotting the cycle on thermodynamic chart 309 9.1.7 Design of condenser 311 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting points 325 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 327 9.3.4 Setting points 327 9.3.5 Setting points 337 9.3.6 Setting points 338 9.3.7 Setting points 339 9.3.8 Setting points 331 9.3.9 Setting points 331 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 339 9.3.4 Setting points 331 9.3.5 Setting points 331 9.3.6 Setting points 331 9.3.7 Setting points 331 9.3.8 Setting points 331 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 338 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1 General issues on cycles, notations 341 10.1 General issues on cycles, notations 341 10.1 Setalpiance 342 10.1 Regeneration cycles 342 10.1 Fine of the mix (outdoor air/recycled air) 342 10.2 Exergy balance 345 10.3 Productive structure 345 10.2 Exergy balances 346 10.2 Exergy balances 347 10.3 Productive structure 350 10.3 Productive structur		9.1	Steam	power plant cycle	301
9.1.3 Creation of simulator elements 306 9.1.4 Setting points 307 9.1.5 Setting of processes 308 9.1.6 Plotting the cycle on thermodynamic chart 309 9.1.7 Design of condenser 311 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of simulator elements 323 9.2.3 Creation of simulator elements 325 9.3 Gast turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.1 Principle of the machine and problem data 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data<			9.1.1	Principle of the machine and problem data	301
9.1.4 Setting points 307 9.1.5 Setting of processes 308 9.1.6 Plotting the cycle on thermodynamic chart 309 9.1.7 Design of condenser 311 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of simulator elements 323 9.2.3 Creation of simulator elements 324 9.2.5 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 330 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.3.6 Setting points 331 9.3.7 Setting of processes 331 9.3.8 Setting of implant or elements 338 9.3.9 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.1.7 Energy and exergy balances 345 10.1.8 Energy and exergy balances 346 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances 340 10.3.5 Examples 340 10.3.5 Conclusion 340 10.3.6 Conclusion 340 10.3.7 Establishment of a productive structure 351 10.3.8 Calcionship between the diagram and the productive structure 351 10.3.5 Examples 357 10.3.6 Con			9.1.2	Creation of the diagram	302
9.1.5 Setting of processes 9.1.6 Plotting the cycle on thermodynamic chart 9.1.7 Design of condenser 9.1.8 Cycle improvements 9.1.9 Modification of the model 9.2 Single stage compression refrigeration cycle 9.2.1 Principle of the machine and problem data 9.2.2 Creation of the diagram 9.2.3 Creation of simulator elements 9.2.4 Setting points 9.2.5 Setting of processes 9.3 Gas turbine cycle 9.3.1 Principle of the machine and problem data 9.2.2 Creation of simulator elements 9.3.2 Creation of simulator elements 9.3.3 Creation of simulator elements 9.3.1 Principle of the machine and problem data 9.3.2 Creation of simulator elements 9.3.3 Creation of simulator elements 9.3.4 Setting points 9.3.5 Setting of processes 331 9.4 Air conditioning installation 9.4.1 Principle of installation and problem data 9.4.2 Supply conditions 9.4.3 Properties of the mix (outdoor air/recycled air) 9.4.3 Properties of the mix (outdoor air/recycled air) 9.4.4 Air treatment 9.4.5 Plot on the psychrometric chart 10.1 General issues on cycles, notations 10.1.1 Motor cycles 10.1.2 Refrigeration cycles 10.1.3 Carnot cycle 10.1.4 Regeneration cycles 10.1.5 Theoretical and real cycles 10.1.6 Notions of efficiency and effectiveness 10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances 10.3.5 Examples 10.3.5 Examples 10.3.6 Conclusion 360			9.1.3	Creation of simulator elements	306
9.1.6 Plotting the cycle on thermodynamic chart 9.1.7 Design of condenser 311 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of the diagram 327 9.3.4 Setting points 330 9.3.5 Setting points 331 9.3.5 Setting points 331 9.3.5 Setting points 331 9.4.1 Principle of the machine and problem data 335 9.4.2 Supply conditions 335 9.4.3 Properties of the mis (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Exergy balances 345 10.2 Exergy balances 346 10.3 Productive structure 350 10.3 Productive structures 350 10.3 Productive structures 350 10.3 Productive structures 350 10.3 Productive structures 350 10.3 Relationship between the diagram and the productive structure 351 10.3 Extablishment of a productive structure 351 10.3 Extablishment of the productive			9.1.4	Setting points	
9.1.7 Design of condenser 315 9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of simulator elements 323 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 330 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.3.6 Setting of processes 331 9.4.1 Principle of installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 349 10.1.6 Notions of efficiency and effectiveness 346 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances 348 10.2.5 Exergy balances 349 10.3.1 Establishment of a productive structure 350 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 350 10.3.5 Examples 357 10.3.6 Conclusion 365			9.1.5	Setting of processes	
9.1.8 Cycle improvements 315 9.1.9 Modification of the model 316 9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 324 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.3.5 Setting of processes 331 9.4.1 Principle of installation 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 338 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 343 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances 348 10.2.5 Exergy balances 349 10.3 Productive structure 350 10.3 Establishment of a productive structure 351 10.3 Establishment			9.1.6	Plotting the cycle on thermodynamic chart	
9.1.9 Modification of the model 9.2 Single stage compression refrigeration cycle 9.2.1 Principle of the machine and problem data 9.2.2 Creation of the diagram 9.2.3 Creation of simulator elements 9.2.4 Setting points 9.2.5 Setting of processes 9.3 Gas turbine cycle 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 9.3.3 Creation of the diagram 9.3.4 Setting points 9.3.5 Setting points 9.3.5 Setting of processes 331 9.3.6 Creation of simulator elements 330 9.3.1 Principle of insulator elements 330 9.3.2 Creation of simulator elements 330 9.3.3 Creation of simulator elements 331 9.3.5 Setting points 9.3.6 Setting points 9.3.7 Principle of installation 335 9.4.1 Principle of installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General issues on Cycles, Energy and Exergy Balances 10.1.1 Motor cycles 10.1.2 Refrigeration cycles 10.1.3 Carnot cycle 10.1.4 Regeneration cycles 10.1.5 Theoretical and real cycles 10.1.6 Notions of efficiency and effectiveness 140 10.2 Energy and exergy balance 10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances 10.2.5 Exergy balances 10.3.5 Establishment of a productive structure 10.3.1 Establishment of a productive structure 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 354 10.3.5 Examples 10.3.6 Conclusion 365			9.1.7	Design of condenser	
9.2 Single stage compression refrigeration cycle 318 9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 330 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditions installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.5 Plot on the psychrometric chart 339 10 General Issues on cycles, Interpretail set of the mix (outdoor air/recycled air) 341 10.1<			9.1.8	, ,	
9.2.1 Principle of the machine and problem data 318 9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 326 9.3.3 Creation of simulator elements 327 9.3.4 Setting points 336 9.3.5 Setting of processes 331 9.3.5 Setting of processes 331 9.4.1 Principle of installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances 346 10.2.5 Exergy balances 346 10.2.6 Exergy balances 346 10.2.7 Exergy balances 346 10.2.8 Exergy balances 346 10.29 Exergy balances 346 10.20 Exergy balances 347 10.21 Exergy balances 348 10.22 Exergy balances 349 10.33 Establishment of a productive structure 350 10.34 Automation of the creation of the productive structure 351 10.35 Examples 357 10.36 Conclusion 365			9.1.9	Modification of the model	
9.2.2 Creation of the diagram 319 9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 326 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General Issues on Cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 348 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.4 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.3 Productive structure 350 10.3 Productive structures 350 10.3 Productive structure 350 10.3 Examples 357 10.3 Examples 357 10.3 Conclusion 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365		9.2	Single	stage compression refrigeration cycle	
9.2.3 Creation of simulator elements 323 9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.2 Energy and exergy balance 345 10.2 Energy balances 346 10.2 Exergy balances 346 10.3 Productive structure 350 10.3 Productive structure 350 10.3 Establishment of a productive structure 351 10.3 Establishment of a productive structure 351 10.3 Examples 357 10.3 Exam				Principle of the machine and problem data	
9.2.4 Setting points 324 9.2.5 Setting of processes 325 9.3 Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1 Energy and exergy balance 345 10.1.2 Energy and exergy balances 346 10.2 Energy and exergy balances 346 10.2 Energy balances 346 10.2 Exergy balances 346 10.3 Productive structure 350 10.3 Establishment of a productive structure 350 10.3 Establishment of a productive structure 351 10.3 Examples 357 10.3 E			9.2.2	Creation of the diagram	
9.2.5 Setting of processes 9.3 Gas turbine cycle 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 9.4.3 Properties of the mix (outdoor air/recycled air) 336 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 10.1.1 Motor cycles 10.1.2 Refrigeration cycles 10.1.3 Carnot cycle 10.1.4 Regeneration cycles 10.1.5 Theoretical and real cycles 10.1.6 Notions of efficiency and effectiveness 341 10.2 Energy and exergy balance 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 10.3 Productive structures 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.4 Automation of the creation of the productive structure 352 10.3.5 Examples 357 10.3.6 Conclusion 362			9.2.3	Creation of simulator elements	
9.3. Gas turbine cycle 327 9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.5 Theoretical and real cycles 343 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet </td <td></td> <td></td> <td>9.2.4</td> <td>Setting points</td> <td>324</td>			9.2.4	Setting points	324
9.3.1 Principle of the machine and problem data 327 9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 343 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balances 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances 350 10.3 Productive structures 350 10.3 Relationship between the diagram and the productive structure 351 10.3.4 Rutomation of the creation of the productive structure 351 10.3.5 Examples 357 10.3.6 Conclusion 365			9.2.5	Setting of processes	325
9.3.2 Creation of the diagram 327 9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.3.6 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.14 Regeneration cycles 343 10.15 Theoretical and real cycles 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2 Exergy balances 346 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 351 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365		9.3	Gas tu	rbine cycle	327
9.3.3 Creation of simulator elements 330 9.3.4 Setting points 331 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			9.3.1	Principle of the machine and problem data	327
9.3.4 Setting points 9.3.5 Setting of processes 331 9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			9.3.2	Creation of the diagram	327
9.3.5 Setting of processes 9.4. Air conditioning installation 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10 General Issues on Cycles, Energy and Exergy Balances 10.1.1 Motor cycles 10.1.2 Refrigeration cycles 10.1.3 Carnot cycle 10.1.4 Regeneration cycles 10.1.5 Theoretical and real cycles 10.1.6 Notions of efficiency and effectiveness 10.2 Energy and exergy balance 10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion			9.3.3	Creation of simulator elements	330
9.4 Air conditioning installation 335 9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 IO General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1 Notions of efficiency and effectiveness 344 10.2 Energy balances 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.3.1 Establishment of a productive structure 350 <td></td> <td></td> <td>9.3.4</td> <td>Setting points</td> <td>331</td>			9.3.4	Setting points	331
9.4.1 Principle of installation and problem data 335 9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structure 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.4 Automation of the creation of the productive structure 353 10.3.5 Examples 357 10.3.6 Conclusion 365			9.3.5	Setting of processes	331
9.4.2 Supply conditions 336 9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339 IO General Issues on Cycles, Energy and Exergy Balances 10.1 Motor cycles 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.3.1 Exetablishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.5 Examples 357		9.4	Air co	nditioning installation	335
9.4.3 Properties of the mix (outdoor air/recycled air) 337 9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339			9.4.1	Principle of installation and problem data	335
9.4.4 Air treatment 338 9.4.5 Plot on the psychrometric chart 339			9.4.2	Supply conditions	336
10 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 351 10.3.2 Relationship between the diagram and the productive structure 351 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			9.4.3	Properties of the mix (outdoor air/recycled air)	337
10.1 General Issues on Cycles, Energy and Exergy Balances 341 10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			9.4.4	Air treatment	338
10.1 General issues on cycles, notations 341 10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			9.4.5	Plot on the psychrometric chart	339
10.1.1 Motor cycles 342 10.1.2 Refrigeration cycles 343 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 344 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365	10	Gene	eral Issu	es on Cycles, Energy and Exergy Balances	341
10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365					341
10.1.2 Refrigeration cycles 342 10.1.3 Carnot cycle 343 10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			10.1.1	Motor cycles	342
10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			10.1.2	·	342
10.1.4 Regeneration cycles 343 10.1.5 Theoretical and real cycles 344 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 345 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365			10.1.3	Carnot cycle	343
10.1.5 Theoretical and real cycles 10.1.6 Notions of efficiency and effectiveness 344 10.2 Energy and exergy balance 345 10.2.1 Energy balances 346 10.2.2 Exergy balances 346 10.2.3 Practical implementation in a spreadsheet 347 10.2.4 Exergy balances of complex cycles 350 10.3 Productive structures 350 10.3.1 Establishment of a productive structure 350 10.3.2 Relationship between the diagram and the productive structure 351 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 365			10.1.4		343
10.1.6 Notions of efficiency and effectiveness 10.2 Energy and exergy balance 10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 345 345 345 346 347 347 347 347 348 349 349 349 349 349 349 349			10.1.5		344
10.2 Energy and exergy balances 10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 345 345 346 347 347 348 349 349 349 349 349 349 349 349 349 349			10.1.6	•	344
10.2.1 Energy balances 10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 345 346 347 347 348 349 349 349 349 349 349 349 349 349 350 350 350 350 350 350 350 350 350 350		10.2	Energ	·	345
10.2.2 Exergy balances 10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 346 347 347 348 349 349 349 349 349 349 350 350 350 350 351 351 352 353 353			-	,	345
10.2.3 Practical implementation in a spreadsheet 10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 347 350 350 351 352 353 353 354 355 357 357 357			10.2.2	= -	346
10.2.4 Exergy balances of complex cycles 10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 350 350 351 352 353 353 353 355 355 357 357			10.2.3		347
10.3 Productive structures 10.3.1 Establishment of a productive structure 10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 10.3.4 Automation of the creation of the productive structure 10.3.5 Examples 10.3.6 Conclusion 350 351 352 353 355 357 357			10.2.4		350
10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365		10.3	Produ		350
10.3.2 Relationship between the diagram and the productive structure 10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365					
10.3.3 Implementation in Thermoptim 353 10.3.4 Automation of the creation of the productive structure 355 10.3.5 Examples 357 10.3.6 Conclusion 365				• ,	
10.3.4Automation of the creation of the productive structure35510.3.5Examples35710.3.6Conclusion365					
10.3.5 Examples 357 10.3.6 Conclusion 365					
10.3.6 Conclusion 365					
				-	
		Refe			365

3	Main	Conve	ntional Cycles	367
П	Intro	duction	: Changing Technologies	369
	11.1		tion of fossil resources and geopolitical constraints	370
	11.2	Local a	and global environmental impact of energy	373
		11.2.1	Increase in global greenhouse effect	373
		11.2.2	Reduction of the ozone layer	375
		11.2.3	Urban pollution and acid rain	376
	11.3	Techno	ology transfer from other sectors	379
	11.4	Techno	ological innovation key to energy future	380
	Refer	ences		381
	Furth	ier readi	ng	381
12	Inter	nal Con	nbustion Turbomotors	383
	12.1	Gas tu	rbines	383
		12.1.1	Operating principles	383
		12.1.2	Examples of gas turbines	385
		12.1.3	Major technological constraints	386
		12.1.4	Basic cycles	390
		12.1.5	Cycle improvements	398
		12.1.6	Mechanical configurations	405
		12.1.7	Emissions of pollutants	411
		12.1.8	Outlook for gas turbines	411
	12.2	Aircra	ft engines	413
			Turbojet and turboprop engines	413
		12.2.2	Reaction engines without rotating machine	431
	Refer	ences		436
	Furtl	ner readi	ng	437
13	Reci	orocatin	g Internal Combustion Engines	439
	13.1		al operation mode	440
	1311	13.1.1	Four- and two-stroke cycles	443
		13.1.2	Methods of cooling	445
	13.2		sis of theoretical cycles of reciprocating engines	446
	13,2	13.2.1	Beau de Rochas ideal cycle	446
		13.2.2	Diesel cycle	448
		13.2.3	Mixed cycle	449
		13.2.4	Theoretical associated cycles	451
	13.3		cteristic curves of piston engines	452
	10.0	13.3.1	Effective performance, MEP and power factor	453
		13.3.2	Influence of the rotation speed	453
		13.3.3	Indicated performance, IMEP	455
		13.3.4	Effective performance, MEP	457
		13.3.5	Specific consumption of an engine	458
	13.4		ne engine	461
	*211	13.4.1	Limits of knocking and octane number	461
		13.4.2	Strengthening of turbulence	462
		13.4.3	Formation of fuel mix, fuel injection electronic systems	463
		13.4.4	Real cycles of gasoline engines	465
	13.5		engines	470
	13.7	13.5.1	Compression ignition conditions	470

		13.5.2	Ignition and combustion delays	4/0
		13.5.3	Air utilization factor	472
		13.5.4	Thermal and mechanical fatigue	473
		13.5.5	Cooling of walls	474
		13.5.6	Fuels burnt in diesel engines	474
		13.5.7	Real cycles of diesel engines	474
	13.6	Design	n of reciprocating engines	476
	13.7	Supero	charging	478
		13.7.1		478
			* *	478
		13.7.3	, e	480
		13.7.4		480
		13.7.5	Conclusions on supercharging	482
	13.8	Engin	e and pollutant emission control	482
		13.8.1	Emissions of pollutants: Mechanisms involved	482
		13.8.2	Combustion optimization	483
		13.8.3	Catalytic purification converters	486
		13.8.4	Case of diesel engines	489
	13.9	Techn	ological prospects	491
		13.9.1	Traction engines	491
		13.9.2	Large gas and diesel engines	495
	Refer	rences		496
	Furth	ner read	ing	496
14	Stirl	ing Eng	ines	499
	14.1	Princi	ple of operation	500
	14.2	Piston	drive	502
	14.3	Thern	modynamic analysis of Stirling engines	503
		14.3.1	Theoretical cycle	503
		14.3.2	Ideal Stirling cycle	504
		14.3.3	Paraisothermal Stirling cycle	506
	14.4	Influe	ence of the pressure	508
	14.5	Choice	e of the working fluid	508
	14.6	Heat e	exchangers	509
		14.6.1	Cooler	509
		14.6.2	Regenerator	509
		14.6.3	Boiler	509
	14.7	Chara	acteristics of a Stirling engine	510
	14.8	Simpl	ified Stirling engine Thermoptim model	512
	Refe	rences		513
	Furtl	her read	ling	513
15	Stea	m Facil	lities (General)	515
	15.1		duction	515
	15.2	Steam	n enthalpy and exergy	515
	15.3		ral configuration of steam facilities	517
	15.4		r deaeration	518
		15.4.1		518
		15.4.2		519
	15.5	Blowd		519

15.6		and steam generators	520
			520
		=	522
			523
			524
15.7			525
			525
			527 522
			528 520
		· · · · · · · · · · · · · · · · · · ·	529 520
15.8			529 530
			530
		e de la companya de	530
			533
		Modeling a direct contact cooling tower in Thermoptim	539
			539
Furth	ier readi	ing	540
Class	ical Ste	am Power Cycles	541
16.1	Conve	ntional flame power cycles	541
	16.1.1	Basic Hirn or Rankine cycle with superheating	541
	16.1.2	Energy and exergy balance	545
	16.1.3	Thermodynamic limits of simple Hirn cycle	546
	16.1.4	Cycle with reheat	547
	16.1.5	Cycle with extraction	548
	16.1.6	Supercritical cycles	550
	16.1.7	Binary cycles	551
16.2			553
		-	554
			555
		*	557
16.3			557
		·	558
		Steam generator	559
		Secondary circuit	561
		Industrial PWR evolution	564
			564
Furth	ner readi	ing	564
Com	bined C	ycle Power Plants	567
17.1	Comb	ined cycle without afterburner	568
	17.1.1	Overall performance	568
	17.1.2	Reduced efficiency and power	569
17.2	Comb	ined cycle with afterburner	570
17.3	Comb	ined cycle optimization	570
17.4			575
17.5			575
17.6		usions and outlook	575
			576
Furtl	ner read	ing	576
	5.7 5.8 5.8 ReferFurth Class 16.1 17.1 17.2 17.3 17.4 17.5 17.6 Refer	15.6.1 15.6.2 15.6.3 15.6.4 5.7 Steam 15.7.1 15.7.2 15.7.3 15.7.4 5.8 Conde 15.8.1 15.8.2 15.8.3 15.8.4 References Further readi Classical Ste 6.1 Conve 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.2 Techn 16.2.1 16.2.2 16.3.3 16.3.4 Reference Further read Combined C 17.1 Comb 17.1.1 17.1.2 17.2 Comb 17.1.1 17.1.2 17.2 Comb 17.3 Comb 17.1.1 17.1.2 17.6 Concl References	15.6.1 Boilers 15.6.2 Steam generators 15.6.3 Boiler operation 15.6.4 Optimization of pressure level 5.7 Steam turbines 15.7.1 Different types of steam turbines 15.7.2 Behavior in off-design mode 15.7.3 Degradation of expansion efficiency function of steam quality 15.7.4 Temperature control by desuperheating 5.8 Condensers, cooling towers 15.8.1 Principle of operation of cooling towers 15.8.2 Phenomenological model 15.8.3 Behaviour models 15.8.4 Modeling a direct contact cooling tower in Thermoptim References Purther reading Classical Steam Power Cycles 16.1 Conventional flame power cycles 16.1.1 Basic Hirn or Rankine cycle with superheating 16.1.2 Energy and exergy balance 16.1.3 Thermodynamic limits of simple Hirn cycle 16.1.4 Cycle with extraction 16.1.5 Cycle with extraction 16.1.6 Supercritical cycles 16.1.7 Binary cycles 16.2 Technology of flame plants 16.2.1 General technological constraints 16.2.2 Main coal power plants 16.2.3 Emissions of pollutants 16.3.1 Primary circuit 16.3.2 Steam generator 16.3.3 Secondary circuit 16.3.4 Industrial PWR evolution Reference Further reading Combined Cycle Power Plants 17.1 Combined cycle without afterburner 17.1.1 Overall performance 17.1.2 Reduced efficiency and power Combined cycle with afterburner 17.1.2 Combined cycle with afterburner 17.1.3 Combined cycle with afterburner 17.1.4 Combined cycle optimization 16.5 Conclusions and outdook

18	Coge	neration and Trigeneration	577			
	18.1	Performance indicators	578			
	18.2	Boilers and steam turbines	579			
	18.3	Internal combustion engines	580			
		18.3.1 Reciprocating engines	580			
		18.3.2 Gas turbines	581			
	18.4	Criteria for selection	583			
	18.5	Examples of industrial plants	583			
		18.5.1 Micro-gas turbine cogeneration	583			
		18.5.2 Industrial gas turbine cogeneration	584			
	18.6	Trigeneration	589			
		18.6.1 Production of central heating and cooling for a supermarket	589			
		18.6.2 Trigeneration by micro turbine and absorption cycle	589			
	Refer		595			
	Furth	ner reading	595			
19	Com	pression Refrigeration Cycles, Heat Pumps	597			
	19.1	Principles of operation	597			
	19.2	Current issues	598			
		19.2.1 Stopping CFC production	598			
		19.2.2 Substitution of fluids	599			
	19.3	Basic refrigeration cycle	601			
		19.3.1 Principle of operation	601			
		19.3.2 Energy and exergy balances	603			
	19.4	Superheated and sub-cooled cycle	606			
		19.4.1 Single-stage cycle without heat exchanger	606			
		19.4.2 Single-stage cycle with exchanger	606			
	19.5	Two-stage cycles	607			
		19.5.1 Two-stage compression cycle with intermediate cooling	607			
		19.5.2 Compression and expansion multistage cycles	608			
	19.6	Special cycles	614			
		19.6.1 Cascade cycles	614			
		19.6.2 Cycles using blends	615			
		19.6.3 Cycles using ejectors	617			
		19.6.4 Reverse Brayton cycles	622			
	19.7	Heat pumps	624			
		19.7.1 Basic cycle	625			
		19.7.2 Exergy balance	626			
	19.8	Technological aspects	627			
		19.8.1 Desirable properties for fluids	627			
		19.8.2 Refrigeration compressors	628			
		19.8.3 Expansion valves	631			
		19.8.4 Heat exchangers	631			
		19.8.5 Auxiliary devices	633			
		19.8.6 Variable speed	633			
	Refe	References				
	Furt	her reading	634			
20	Lian	id Absorption Refrigeration Cycles	635			
-0	20.1	Introduction	635			
	20.2	Study of a NH ₃ -H ₂ O absorption cycle	636			
		, w3 <u>-</u>				

	20.3	Modeli	ing LiBr-H ₂ O absorption cycle in Thermoptim	642
	Refer	ences		643
21	Air C	onditio	ning	645
<i>_</i> '	21.1		of an air conditioning system	645
	21.2		oles of cycles	647
	21.2	21.2.1	Summer air conditioning	648
		21.2.2	Winter air conditioning	649
	Refer		Whiter air conditioning	652
		ier readi	ing	652
22	Ontir	mizatior	n by Systems Integration	653
	22.1		principles	654
	22.1	22.1.1	Pinch point	654
		22.1.2	Integration of complex heat system	655
	22.2		n of exchanger networks	658
	22.3		nizing the pinch	659
	22.9		Implementation of the algorithm	660
			Establishment of actual composite curves	663
		22.3.3	-	663
		22.3.4	r ,	665
			Thermal machines and heat integration	670
	22.4		ization by irreversibility analysis	671
	44.1	22.4.1	Component irreversibility and systemic irreversibility	671
		22.4.2	Optimization method	674
	22.5		mentation in Thermoptim	676
	22.9	22.5.1	Principle	676
		22.5.2	Optimization frame	677
	22.6	Examp	•	682
	22.0	22.6.1	Determination of HP and LP flow rates	683
		22.6.2	Matching fluids in heat exchangers	684
	Refer	rences	Watering Hards in near exchangers	690
		ner readi	ing	690
4	Inno	vative	Advanced Cycles, including Low Environmental	
	lmp			691
23	Exte		ss Development	693
	23.1	Gener	al, external substances	693
		23.1.1	Introducing custom components	693
		23.1.2	Simple substance: example of DowTherm A	696
		23.1.3	1 0 / 1 1	697
	23.2	Flat pl	late solar collectors	699
		23.2.1	Design of the external component	699
	23.3	Calcul	lation of moist mixtures in external classes	702
		23.3.1	Introduction	702
		23.3.2		703
	23.4	Extern	nal combustion	707
		23.4.1	Model of biomass combustion	707
		23.4.2	Presentation of the external class	710

	23.5	Coolin	g coil with condensation	710
		23.5.1	Modeling a cooling coil with condensation in Thermoptim	711
		23.5.2	Study of the external class DehumidifyingCoil	712
	23.6	Coolin	g towers	715
		23.6.1	Modeling of a direct contact cooling tower in Thermoptim	716
		23.6.2	Study of external class DirectCoolingTower	719
	23.7	Extern	al drivers	721
			Stirling engine driver	<i>7</i> 21
			Creation of the class: visual interface	722
			Recognition of component names	723
		23.7.4	Calculations and display	723
	23.8		al class manager	724
24	Adva	nced Ga	as Turbines Cycles	727
	24.1		d air gas turbine	727
	24.2		critical CO ₂ cycles	732
	21,2	24.2.1	Simple regeneration cycle	732
			Pre-compression cycle	732
			<u> </u>	733 734
			Recompression cycle	
	24.2		0 ,	736
	24.3		aced combined cycles	737
		24.3.1	Air combined cycle	737
		24.3.2	Steam flash combined cycle	739
		24.3.3	Steam recompression combined cycle	741
	T	24.3.4	Kalina cycle	741
	Refei	rences		750
25	Evap	oration	, Mechanical Vapor Compression, Desalination, Drying by Hot Gas	751
	25.1	Evapo	ration	<i>7</i> 51
		25.1.1	Single-effect cycle	751
		25.1.2	Multi-effect cycle	752
		25.1.3	Boiling point elevation	753
	25.2	Mecha	nical vapor compression	754
		25.2.1	Evaporative mechanical vapor compression cycle	754
		25.2.2		755
		25.2.3	Design parameters of a VC	755
	25.3	Desali		757
		25.3.1	Simple effect distillation	757
		25.3.2	Double effect desalination cycle	758
		25.3.3	Mechanical vapor compression desalination cycle	758 758
		25.3.4	Desalination ejector cycle	758 758
		25.3.5	Multi-stage flash desalination cycle	759 759
		25.3.6	Reverse osmosis desalination	759 761
	25 1			
	25.4	, ,	g by hot gas	764 766
	Kete	rences		766
26	Cryo	genic Cy	ycles	767
	26.1	-	Thomson isenthalpic expansion process	767
		26.1.1	Basic cycle	767
		26.1.2	Linde cycle	769
		26.1.3	Linde cycles for nitrogen liquefaction	770

	26.2 Reverse Brayton cycle			772 773
	26.3	3 Mixed processes: Claude cycle		
	26.4	4 Cascade cycles		
	Refer	ences		775
27	Electrochemical Converters			
	27.1	Fuel cells		777
		27.1.1 SOFC modeling	5	780
		27.1.2 Improving the o	cell model	782
		27.1.3 Model with a th		784
			C fuel cell with a gas turbine	784
		O	nodel to replace H ₂ by CH ₄	786
	27.2	Reforming		789
			eformer in Thermoptim	789
		27.2.2 Results		792
	27.3	Electrolysers		792
			igh temperature electrolyser in	
		Thermoptim		793
		27.3.2 Results		794
	Refe	ences		795
28	Global Warming and Capture and Sequestration of CO ₂			
	28.1	Problem data		797
	28.2	Carbon capture and stor	age	798
		28.2.1 Introduction		798
		28.2.2 Capture strateg	ies	800
	28.3	Techniques implemente	d	801
		28.3.1 Post-combustio	n techniques	801
		28.3.2 Pre-combustion	techniques	804
		28.3.3 Oxycombustion	n techniques	814
	Refe	ences		825
29	Future Nuclear Reactors			827
	29.1 Introduction			827
	29.2	Reactors coupled to Hir	n cycles	829
		29.2.1 Sodium cooled	fast neutron reactors	829
		29.2.2 Supercritical w	ater reactors	830
	29.3	Reactors coupled to Bra	yton cycles	830
		29.3.1 Small capacity	modular reactor PBMR	831
		29.3.2 GT-MHR reac		832
		29.3.3 Very high temp	perature reactors	833
			neutron reactors	834
		29.3.5 Lead cooled fas	et reactors	834
		29.3.6 Molten salt read	ctors	834
		29.3.7 Thermodynam	ic cycles of high temperature reactors	835
	29.4	Summary	·	840
		ences		840
30	Solar Thermodynamic Cycles			841
	30.1	Direct conversion of sol		841
		30.1.1 Introduction	<i>3,</i>	841

		30.1.2 Thermal conversion of solar energy	842
	20.2	30.1.2 Thermodynamic cycles considered	844
	30.2	Performance of solar collectors	845
		30.2.1 Low temperature solar collectors	845
		30.2.2 Low temperature flat plate solar collector model	846
		30.2.3 High temperature solar collectors	847
	30,3	30.2.4 Modeling high temperature concentration collectors	847
	30.3	Parabolic trough plants	849
		30.3.1 Optimization of the collector temperature	849
	30,4	30.3.2 Plant model	850
	30.5	Parabolic dish systems	851
	30.5	Power towers	852
		Hybrid systems rences	853
	Kelei	rences	854
31	Othe	er than Solar NRE cycles	855
	31.1	Solar ponds	855
		31.1.1 Analysis of the problem	856
		31.1.2 Plot of the cycle in the entropy chart	857
		31.1.3 Exergy balance	857
		31.1.4 Auxiliary consumption	857
	31.2	Ocean thermal energy conversion (OTEC)	858
		31.2.1 OTEC closed cycle	859
		31.2.2 OTEC open cycle	861
		31.2.3 Uehara cycle	862
	31.3	Geothermal cycles	864
		31.3.1 Direct-steam plants	865
		31.3.2 Simple flash plant	865
		31.3.3 Double flash plant	867
		31.3.4 Binary cycle plants	868
		31.3.5 Kalina cycle	869
		31.3.6 Combined cycles	870
		31.3.7 Mixed cycle	872
	31.4	Use of biomass energy	873
		31.4.1 Introduction	873
		31.4.2 Modeling thermochemical conversion	875
	Refe	rences	878
32	Heat	and Compressed Air Storage	879
	32.1	Introduction	879
	32.2	Methodological aspects	880
	32.3	Cold storage in phase change nodules	881
	32.4	Project Sether (electricity storage as high temperature heat)	881
	32.5	Compressed air storage devices	883
		32.5.1 CAES (Compressed Air Energy Storage) concept	883
		32.5.2 Peaker concept of Electricite de Marseille	333
		Company	884
		32.5.3 Hydropneumatic energy storage HPES	884
	Refer	rences	887

ixx

33		lation of Thermodynamic Solar Installations	889 889	
	33.1	1		
	33.2	Estimation of the solar radiation received by a solar collector	891	
	33.3	Cumulative frequency curves of irradiation	893	
		33.3.1 Curve construction	894	
		33.3.2 Curve smoothing	894	
		33.3.3 Estimation of CFCS from empirical formulas	895	
	22.4	33.3.4 Interpolation on tilt	896	
	33.4	Hourly simulation models	896 897	
	33.5	Simplified design methods	897 897	
		33.5.1 Principle of methods	897 897	
	Refer	33.5.2 Usability curves rences	899	
5	Tock	nological Design and Off-design Operation	901	
34	Tech : 34.1	nological Design and Off-design Operation, Model Reduction Introduction	903 903	
			905	
	34.2	Component technological design 34.2.1 Heat exchangers	906	
		34.2.2 Displacement compressors	908	
		34.2.3 Expansion valves	909	
		34.2.4 Practical example: design of a cycle	909	
	34.3	Off-design calculations	914	
	51.5	34.3.1 Principle of computing coupled systems in Thermoptim	914	
		34.3.2 Off-design equations of the refrigerator	915	
		34.3.3 After processing of simulation results	916	
		34.3.4 Effect of change in UA	917	
	34.4	Development of simplified models of systems studied	919	
		34.4.1 Model reduction principle	919	
		34.4.2 Model reduction example	920	
	34.5	Methodological difficulties	921	
	References		922	
35	Tech	nological Design and Off-design Behavior of Heat Exchangers	923	
	35.1	Introduction	923	
		35.1.1 General	923	
		35.1.2 Reminders on the NTU method	924	
	35.2	Modeling of heat transfer	925	
		35.2.1 Extended surfaces	925	
		35.2.2 Calculation of Reynolds and Prandtl numbers	926	
		35.2.3 Calculation of the Nusselt number	927	
		35.2.4 Calculation of multi-zone exchangers	929	
	35.3	Pressure drop calculation	933	
		35.3.1 Gas or liquid state pressure drop	933	
	25.4	35.3.2 Two-phase pressure drop	934	
	35.4	Heat exchanger technological screen	935	
		35.4.1 Heat exchanger technological screen	935	
	25.5	35.4.2 Correlations used in Thermoptim	935 937	
	35.5	35.5 Model parameter estimation		

		35.5.1	Direct setting from geometric data	937
		35.5.2	Identification of exchanger parameters	940
	Refer	ences		941
36	Mode	eling an	d Setting of Displacement Compressors	943
	36.1	Behavi	ior models	943
		36.1.1	Operation at rated speed and full load	945
		36.1.2	Operation at partial load and speed	947
	36.2	Practic	cal modeling problems	948
		36.2.1	Technological screen of displacement compressors	948
		36.2.3	Identification of compressor parameters	949
		36.2.4	0	949
		36.2.5	Calculation in off-design mode	949
		36.2.6	Fixed V_i screw compressors	949
	Refer	rences		950
37	Mode	eling an	d Setting of Dynamic Compressors and Turbines	951
	37.1	Supple	ements on turbomachinery	952
		37.1.1	Analysis of the velocity triangle	952
		37.1.2	Degree of reaction of one stage	953
		37.1.3	Theoretical characteristics of turbomachinery	954
		37.1.4	Real characteristics of turbomachinery	956
		37.1.5	Factors of similarity	959
	37.2	Pumps	961	
	37.3	k.		963
		37.3.1	Performance maps of dynamic compressors	963
		37.3.2	Analysis of performance maps of dynamic	
			compressors	965
		37.3.3	Technological screen of dynamic compressors	970
	37.4	Turbir	971	
		37.4.1	Performance maps of turbines	972
		37.4.2	Isentropic efficiency law	973
		37.4.3	Stodola's cone rule	975
		37.4.4	Baumann rule	977
		37.4.5	Loss by residual velocity	978
		37.4.6	Technological screen of turbines	979
		37.4.8	Identification of turbine parameters	979
	37.5	37.5 Nozzles		
	References			980
38	Case	Studies		981
	38.1	Introd		981
	38.2		ressor filling a storage of compressed air	982
		38.2.1	Modeling of the heat exchanger	982
		38.2.2	Design of the driver	984
		38.2.3	Analysis of the cooled compressor	985
		38.2.4	Use of the model to simulate the filling of a compressed	707
		•	air storage	989
	38.3	Steam	power plant	990
		38.3.1	Introduction, results	990
			•	0

Contents

995

995

996

998

999

1003 1005

38.4 Refrigeration machine
38.4.1 Introduction, results

38.4.2 Principle of resolution
38.5 Single flow turbojet

38.5.2 Presentation of the external class

38.5.1 Introduction, results

Index