MECHANISM AND DESIGN OF SEQUENCING BATCH REACTORS FOR NUTRIENT REMOVAL

BY

NAZIK ARTAN AND DERIN ORHON

Contents

	Preface	vi
	The Authors	ix
	Nomenclature	х
1	Introduction	1
1.1	Historical perspective	1
1.2	Current experience	3
1.2.1	Basic and applied research	3 3 5
1.2.2	Full-scale application	5
1.3	Need for modeling and a unified basis for design	5
1.3.1	The concept of process stoichiometry and modelling	6
1.3.2	Objective and scope	7
2	Process description	9
2.1	General description	9
2.1.1	Cycle frequency (m)	10
2.1.2	Nominal Hydraulic Retention Time (HRT)	10
2.1.3	Duration of phases in a cycle	11
2.1.4	Duration of periods in a process phase	11
2.1.5	Number of tanks	12
2.1.6	Sludge Retention Time (SRT)	12
2.2	Reactor hydraulics	13
2.3	Process options	16
2.3.1	Carbon removal and nitrification	16
2.3.2	Nutrient removal	17
2.4	Effects of filling and aeration patterns on population dynamics	22
3	Process design for carbon removal	23
3.1	Basic principles	23
3.2	Selection of SRT	25
3.2.1	Effluent quality	26

3.2.2	Excess sludge production and reactor biomass	26
3.3	Single tank design principles	27
3.4	Aeration system design principles	30
3.5	Process design	33
3.5.1	Design procedure	33
3.5.2	SBR equipment and the practical aspects of SBR design	36
3.5.3	Design example	41
4	Process design for nutrient removal	46
4.1	Basic principles for nitrogen removal	46
4.1.1	Nitrogen mass balances	47
4.1.2	Carbon and nitrate limitations	49
4.1.3	Selection of process option	50
4.2	Unified design procedure for nitrogen removal	51
4.2.1	SBR design for pre-denitrification	53
4.2.2	SBR design for step feeding	57
4.2.3	SBR design for intermittent aeration	59
4.3	Design considerations for phosphorus removal	60
4.3.1	Mechanism of Biological Phosphorus Removal	61
4.3.2	Factors affecting EBPR	61
4.3.3	EBPR without nitrogen removal	63
4.3.4	Simultaneous nitrogen and phosphorus removal	64
4.4	Retrofit of existing SBR plants	66
5	Performance evaluation by simulation models	69
5.1	Need for simulation models	69
5.2	Performance evaluation for COD removal	71
5.2.1	Effect of filling on effluent soluble COD	73
5.2.2	Effect of filling on dissolved oxygen profile	75
5.3	Performance evaluation for nitrogen removal	76
5.3.1	Evaluation of simulation results	77
5.3.2	Comparison of process options	81
5.4	Performance evaluation for phosphorus removal	82
5.4.1	Effect of system parameters	82
5.4.2	Effect of wastewater composition	85
5.5	Evaluation of simultaneous nitrogen and phosphorus removal performances	88
5.6	Evaluations of dynamic conditions	89
6	Concluding Remarks	92
	References	94
	Indev	97