

Drilling and Completion in Petroleum Engineering

Theory and Numerical Applications

Xinpu Shen, Mao Bai and William Standifird EDITORS

Table of contents

Ab	out th	e book series	VII
Edi	torial	board of the book series	IX
For	ewore	i	XVII
Ab	out th	ne editors	XIX
Acl	cnowl	edgements	XXI
1	Mat	hematical modeling of thermo-hydro-mechanical behavior for reservoir	
	formation under elevated temperature		
	1.1	Introduction	1
	1.2	General conservation equations of heat and mass transfer within	
		a deformable porous medium	2
		1.2.1 Macroscopic mass conservation equations	2
		1.2.2 Linear momentum conservation equations	3
		1.2.3 Energy (enthalpy) conservation equations	4
	1.3	Constitutive laws	5
		1.3.1 Constitutive equations for mass transfer	5
		1.3.1.1 Advective flow of gas	5
		1.3.1.2 Advective mass flow of liquid	5
		1.3.2 Constitutive equations for heat transfer	6
		1.3.2.1 Conductive heat transfer within the domain Ω	6
		1.3.2.2 Heat transferred in radiation at boundary $\partial\Omega$	6
		1.3.3 Constitutive equations for the mechanical response of the solid phase	6
	1.4	Some empirical expressions	7
		1.4.1 The expression of total porosity n	7
		1.4.2 The expression of \dot{m}_{desorp}	7
	1 5	1.4.3 Effective thermal conductivity of the three-phase medium	8
	1.5	Resultant governing equations	8 9
	1.7	1	
	1.7	Approximate solution and spatial discretization	13
	1.0	Ending remarks	16
2	Damage model for rock-like materials and its application		
	2.1	Introduction	19
	2.2	The Barcelona model: Scalar damage with different behaviors	
		for tension and compression	20
		2.2.1 Uniaxial behavior of the Barcelona model	20
		2.2.2 Unloading behavior	21
		2.2.3 Plastic flow	22
		2.2.4 Yielding criterion	22
	2.3	Calibration for the size of damage process zone	23
		2.3.1 Experiments performed with the white-light speckle	
		method and four-point shear beam	24

			2.3.1.1 Testing device	24
			2.3.1.2 Experimental results	24
		2.3.2	Numerical results obtained with finite-element analysis	25
			2.3.2.1 Discretization of the double-notched, four-point	25
			shear beam	27
			2.3.2.2 Numerical results obtained with double notched beam	28
		2.3.3	Numerical results obtained with single-notched beam	34
		2.3.4	•	38 38
		2.3.3	Remarks	38
3			optimization for offshore wells and numerical prediction	
			ilure due to production-induced compaction	41
	3.1		luction	41
	3.2		chnical casing design and optimal trajectories	41
	3.3		ork procedure	43
	3.4	The m		44
			Model geometry	44
			Material models	45
	2.7	3.4.3	· ·	47 48
	3.5		crical results of the global model	50
	3.6 3.7		ral principle of submodeling techniques submodel	51
	3.1		Local model results	53
	3.8		dary submodel and casing integrity estimate	53
	3.9		usions	54
				٠.
4			scheme for calculation of shear failure gradient of	
			d its applications	57
	4.1		luction COPC 141 2D FFM	57
	4.2		ne for calculation of SFG with 3D FEM	58
	4.3		erical solution of SFG and its comparison with	59
		4.3.1	s obtained by Drillworks The model geometry of the benchmark and its FEM mesh	59
		4.3.2	Loads and parameters of material properties	62
		4.3.3	Abaqus submodel calculation and results with Mohr-Coulomb model	62
		4.3.4	Results comparison with Drucker-Prager criterion between	02
		1.5.1	Abagus and Drillworks	65
		4.3.5	Remarks	67
	4.4		parison of accuracy of stress solution of a cylinder obtained	
			pagus and its analytical solution	67
	4.5	•	cation	68
		4.5.1	Pore pressure analysis with Drillworks	69
		4.5.2	The 3D computational model	70
			4.5.2.1 Global model: Geometry, boundary condition, and loads	70
			4.5.2.2 Numerical results of the global model	73
			4.5.2.3 Vector-distribution of principal stresses	74
			4.5.2.4 Submodel: Geometry, boundary condition, and loads	74
		_	4.5.2.5 Numerical results of the submodel	75
	4.6	Rema	rks	78
5	Mu	d weigh	nt design for horizontal wells in shallow loose sand reservoir	
		-	nite element method	81
	5.1	Intro	duction	81

Geological setting and geological factors affecting geomechanics

	5.3	Pore pressure a	and initial geostress field: Prediction made with			
		logging data as	nd one-dimensional software	83		
		5.3.1 Pore pr	ressure	83		
			field orientation	83		
		5.3.3 Overbu	urden gradient (vertical in-situ stress)	84		
		5.3.4 Minim	um in-situ stress	84		
		5.3.5 Maxim	um in-situ horizontal stress	84		
	5.4	Formation stre	ength and geomechanical properties	84		
		Finite element		87		
	5.6	Numerical resu	ults with finite element modeling	88		
	5.7	Conclusions	Ž	92		
6	,					
		or subsalt wells				
		1 Introduction				
	6.2		concepts of MWW and numerical procedure for	0.5		
		its 3D solution		97		
			eview of mud weight window concepts	97		
	()		ical procedure for calculating MWW with 3D FEM	99		
	6.3		description and numerical results	99		
		6.3.1 Model		99		
	6.4		ical results of the global model	106		
	6.4		cription and numerical results	107		
			description	107		
			ical results of SFG and FG obtained with	***		
	6 5		ondary submodel	109 109		
		6.5 Stress pattern analysis for saltbase formation				
	6.6	Alternative vai	idation on stress pattern within saltbase formation	115		
	6.7 6.8	Conclusions	h 1D tool Drillworks and its comparison with 3D solution	115		
	0.8	Conclusions		117		
7	Numerical calculation of stress rotation caused by salt creep					
	and	pore pressure de	epletion	119		
	7.1	Introduction		119		
	7.2	Stress analysis	for a subsalt well	121		
		7.2.1 Compu	atational model	121		
		7.2.2 Numer	ical results	122		
	7.3	Variation of st	ress orientation caused by injection and production	125		
		7.3.1 The mo	odel used in the computation	125		
		7.3.2 Numer	ical results	125		
			Numerical results of stress rotation with isotropic			
			permeability and injection	125		
		7.3.2.2	Numerical results on stress rotation with isotropic			
			permeability and production	125		
		7.3.2.3	Numerical results on stress rotation with orthotropic			
			permeability and injection	127		
		7.3.2.4	Numerical results on stress rotation with orthotropic			
			permeability and production	129		
		7.3.3 Remark		130		
	7.4	Variation of st	ress orientation caused by pore pressure	_		
			e study in Ekofisk field	130		
			merical model	130		
			ical results	132		
	7.5	Conclusions		136		

8	Nun 8.1		unalysis of casing failure under non-uniform loading in subsalt wells	139 139	
	8.2	Introduction Finite element model and analysis of casing integrity			
	0.2	8.2.1	Numerical analysis of global model at field scale	141 142	
		0.2.1	8.2.1.1 Model geometry	142	
			8.2.1.2 Material models	142	
			8.2.1.3 Loads and boundary conditions of the global model	144	
			8.2.1.4 Numerical results of global model	144	
		8.2.2	Submodel and casing integrity estimate	144	
		0.2.2	8.2.2.1 Model geometry	144	
			8.2.2.2 Material models	145	
			8.2.2.3 Loads specific to the submodel	146	
			8.2.2.4 Numerical results of the submodel: Stress distribution	110	
			around the borehole before cementing	146	
			8.2.2.5 Numerical results of submodel: Stress distribution	110	
			within the concrete ring and casing	147	
	8.3	Nume	rical results of enhancement measure	149	
	8.4	Conch		151	
				10.	
9		_	predictions on critical pressure drawdown and sand production		
			weak formations	155	
		Introd		155	
	9.2		l description and numerical calculation	156	
		9.2.1	Numerical calculation with global model	156	
			9.2.1.1 Values of material parameters	157	
			9.2.1.2 Loads and boundary conditions of the global model	157	
			9.2.1.3 Stress pattern	158	
			9.2.1.4 Numerical results of global model	159	
	9.3		: Prediction of CVPDD for a well with openhole completion	159	
		9.3.1	Submodel 1: Geometry of the submodel	159	
		9.3.2	Submodel 1: Boundary condition and loads	159	
		9.3.3	Numerical scheme of the calculation	159	
		9.3.4	Numerical results	160	
	9.4		2: Numerical prediction of CVPDD for well with casing completion	163	
		9.4.1	Modeling casing	164	
		9.4.2	Case 2A: Casing with perforation of 8 shots per 0.3048 m	165	
			9.4.2.1 Description of the model: Case 2A	165	
			9.4.2.2 Numerical results of Case 2A	166	
		9.4.3	Case 2B: Casing with perforation of 4 shots per 0.348 m (per ft)	166	
			9.4.3.1 Geometry of the model: Case 2B	166	
		0.4.4	9.4.3.2 Numerical results of Case 2B	167	
	0.5	9.4.4	Remarks	168	
	9.5		erical prediction of sanding production	168	
		9.5.1	Model description and simplifications	168	
		9.5.2	Numerical procedure for prediction of sand production	169	
	0.6	9.5.3	An example of prediction of sand production	170 172	
	9.6 Conclusions				
10	Col	esive ci	rack for quasi-brittle fracture and numerical simulation		
	of hydraulic fracture				
	10.1 Introduction				
	10.2		sive crack for quasi-brittle materials	175	
		10.2.1	Concepts of cohesive crack	175	

10.2.2 Influence of hydraulic pressure on yielding conditions

_			
		10.2.2. (3.1.)	155
		10.2.3 Cohesive models for mixed-mode fracture	177
		10.2.4 Cohesive model of effective opening for mixed-mode crack	177
		10.2.5 Cohesive law formulated in standard dissipative system	179
		10.2.5.1 Elastoplastic damage interface model	180
	10.0	10.2.5.2 Viscoplastic interface crack model	181
	10.3	Cohesive element coupled with pore pressure for simulation	
		of hydraulic fracture of rock	181
		10.3.1 Nodal sequence and stress components of cohesive element	181
		10.3.2 Fluid flow model of the cohesive element	182
		10.3.2.1 Defining pore fluid flow properties	182
		10.3.2.2 Tangential flow	182
		10.3.2.3 Newtonian fluid	183
		10.3.2.4 Power law fluid	183
		10.3.2.5 Normal flow across gap surfaces	183
	10.4	Numerical simulation of hydraulic fracturing with 3-dimensional	
		finite element method	184
		10.4.1 Numerical procedure for the numerical simulation	
		of hydraulic fracturing	184
		10.4.2 Finite element model	184
		10.4.2.1 Geometry and mesh	184
		10.4.2.2 Initial conditions	184
		10.4.2.3 Boundary condition	185
		10.4.2.4 Loads	185
		10.4.2.5 Values of material parameter	185
		10.4.3 Numerical results	187
	10.5	Conclusions	189
11	Spec	ial applications in formation stimulation and injection modeling	193
	11.1	Introduction	193
	11.2	Normal applications	194
	11.3	Special applications	196
	11.4	Unconventional shale gas reservoirs	196
		11.4.1 Theoretical basis in simulation	196
		11.4.2 An equivalent shale gas hydraulic fracturing model	197
		11.4.3 Leakoff effect for a contained fracture	199
		11.4.4 Concluding remarks	199
	11.5	Cuttings re-injection	200
		11.5.1 Theoretical basis in simulation	200
		11.5.2 An equivalent cuttings re-injection model	200
		11.5.3 Key input parameters for cuttings re-injection modeling	201
		11.5.4 Multiple fracture modeling	202
		11.5.5 Net pressure responses in cyclic injection	204
		11.5.6 Concluding remarks	206
	11.6	Fracture packing in unconsolidated formation	206
		11.6.1 Theoretical basis in simulation	206
		11.6.2 An equivalent frac-pack model	206
		11.6.3 Key input parameters for frac-pack modeling	208
		11.6.4 Fracture re-growth during the frac-pack process	208
		11.6.5 Concluding remarks	211
	11.7	Produced water re-injection	212
	~ ^ • • •	11.7.1 Theoretical basis in simulation	212
		11.7.2 An equivalent produced water re-injection model	212
		11.7.3 Numerical modeling of cross flow in produced water transport	213
		******* Transcreas moderning of cross from in produced water transport	413

/I	Table	of	contents

Subject index

Book series page

11.7.5 Concluding remarks

11.7.4	Analytical modeling of cross flow and its effect on
	produced water transport

218

219

221