APPLIED WELDING ENGINEERING

PROCESSES, CODES AND STANDARDS

RAMESH SINGH

Contents

Acki	ace nowledgment	xxi xxiii
	ction 1 roduction to Basic Metallurgy	
1.	Introduction	3
	Pure Metals and Alloys	4
	Smelting	4
	Iron	4
	Sponge Iron	4
2.	Alloys	7
	Alloys	7
	Effects of Alloying Elements	8
	Carbon Steels	8
	Sulfur	8
	Manganese	8
	Phosphorus	9
	Silicon	9
	Alloy Steels	9
	The Effect of Alloying Elements on Ferrite	9
	Effects of Alloying Elements on Carbide	10
3.	Physical Metallurgy	13
	Crystal Lattices	13
	Crystal Structure Nomenclature	14
	Solidification	14
	Lever Rule of Solidification	14
	Constitutional Supercooling	16
	Elementary Theory of Nucleation	17
	Allotropy	18
	Crystal Imperfections	21
	Grain Size	21

viii Contents

4.	Structure of Materials	23
	Phase Diagrams	24
	Different Types of Phase Diagrams	24
	Iron-Iron Carbide Phase Diagram	28
	Explanation of the Iron-Carbon Phase Diagram	28
	Rationale for Letter Designations in the Iron-Iron Carbide Phase	
	Diagram	32
5.	Production of Steel	33
	The Electric Arc Furnace (EAF) Process	33
	Furnace Charging	34
	Melting	35
	Refining	36
	Phosphorus Removal	36
	Sulfur Removal	37
	Nitrogen and Hydrogen Control	37
	De-Slagging :	38
	Tapping	38
	Basic Oxygen Furnace (BOF)	39
	Refining Reactions	40
	Carbon	40
	Silicon	40
	Manganese	41
	Phosphorus	42
	Sulfur Removal	43
	Deoxidation of Steel	44
	Rimmed Steel	45
	Capped Steel	46
	Semi-Killed Steel	46
	Killed Steel	46
	Deoxidation Equilibria	47
	The Iron-Iron Carbide Phase Diagram	50
6.	Classification of Steels	51
	Carbon Steels	53
	Low-Carbon	53
	Medium-Carbon	53
	High-Carbon	54
	Ultrahigh-Carbon	54
	High-Strength Low-Alloy (HSLA) Steels	54
	Classification of HSLA	54

Contents	ix

	Low-Alloy Steels	55
	Low-Carbon Quenched and Tempered Steels	55
	Medium-Carbon Ultrahigh-Strength Steels	55
	Bearing Steels	55
	Chromium-Molybdenum Heat-Resistant Steels	55
	AISI Series	56
	Some Example AISI Classifications	56
7.	Cast Iron	57
	Types of Cast Iron	57
	White Cast Iron	59
	Malleable Cast Iron	59
	Ferritic Malleable Iron	60
	White Heart Cast Iron	60
	Black Heart Cast Iron	60
	Pearlite Malleable Cast Iron	60
	Martensitic Malleable Iron	60
	Gray Cast Iron	61
	Castability of Gray Cast Iron	62
	Chilled Cast Iron	63
	Nodular (Spheroidal Graphite) Cast Iron	63
	Castability, Solidification and Shrinkage	63
	Alloy Cast Irons	64
8.	Stainless Steels	65
	Stainless Steel Production	65
	Forming	66
	Heat Treatment	66
	Cutting Stainless Steel	68
	Finishing	68
	Fabrication of Stainless Steel	69
	Welding and Joining	69
	Types of Stainless Steels	69
	Classification of Stainless Steel	70
	Martensitic Stainless Steels	70
	Ferritic Stainless Steels	70
	Pitting Resistance Equivalent (PRE)	71
	Austenitic Stainless Steels	<i>7</i> 1
	Duplex Stainless Steels	72
	Precipitation-Hardening (PH) Stainless Steels	73

Conter

9.	Non-Ferrous Materials	<i>7</i> 5
	Copper and Copper Alloys	<i>7</i> 5
	Aluminum and Aluminum Alloys	76
	Physical Metallurgy of Aluminum	76
	Effect of Alloying Elements on Aluminum	76
	Effect of Iron	77
	Effect of Silicon	77
	Effect of Manganese	77
	Effect of Magnesium	77
	Effect of Copper	78
	Effect of Zinc	78
	Effect of Chromium	78
	Effect of Zirconium	78
	Effect of Lithium	79
	Age Hardenable Alloys	79
	Nickel and Nickel Alloys	80
	Titanium and Titanium Alloys	81
10.	Working With Metals	83
	Elastic Limit	83
	Plastic Deformation	84
	Fracture	84
	Polycrystalline Materials	84
	Cold Working	84
	Stored Energy	85
	Restoring the Lattice Structure of Metal after Cold	
	Work – Annealing	85
	Grain Growth	85
	Hot Working	86
11.	Mechanical Properties and Testing of Metals	87
	Strength of Materials	87
	Elastic and Plastic Behavior	88
	Ductile vs. Brittle Behavior	88
	Failure	89
	Fracture	89
	Fracture Control	90
	Crack Growth and Fracture	91
	Damage Tolerance	91
	Failure Analysis	91
	Testing of Metals	93
	Tensile Test	93

Contents	(xi
----------	-----

	Hardness Test	93
	Impact Test	94
	Creep Test	94
	Fatigue Test	94
12.	Heat Treatment of Steels	95
	TTT and CCT Curves	96
	Isothermal-Transformation (IT) or (TTT) Diagrams	96
	Cooling Curves	98
	Cooling-Transformation (C-T) Diagrams	98
	Stress Relief Annealing	98
	Normalizing	100
	Annealing	100
	Spheroidizing	101
	Tempering	102
	Austempering of Steels	102
	Martempering	102
	Hardening	103
	Hardening by Martensite Transformation	103
	Case Hardening and Carburizing	103
	Process of Quenching	105
	Heat Treatment of Non-Ferrous Material	105
	Heat Treatment of Copper and Copper Alloys	105
	Heat Treating Aluminum and its Alloys	106
	Heat-Treating Furnaces	106
	Liquid Heating Baths	107
Se	ction 2	
	elding Metallurgy and Welding Processes	
1.	Introduction	111
	Welding Procedures	112
2.	Physics of Welding	115
	Heat	116
	Details of the Heat-Flow in Welding	11 <i>7</i>
	Heat in Arc Welding Processes	120
	Heat in Plasma Arc Cutting and Welding	121
	Heat in Resistance Welding	121
	Heat in Electroslag Welding (ESW)	122
	Heat in Welding Processes using Chemical Sources	124
	Thermit Welding	125

	Heat Generated by Mechanical Processes	126
	Friction Welding	126
	Ultrasonic Welding	127
	Explosion Welding	128
	Heat by Focused Sources	128
	Laser Beam Welding (LBW)	129
	Electron Beam Welding (EBW)	130
	Other Sources of Heat in Welding	131
	Application of the Principles of Welding Physics	133
	Pre-Heating	133
	Determining the Need for Pre-Heat and the Temperature	134
	Post-Weld Heat Treatment (PWHT)	138
	Heat and Time in Welding	139
	Heat Input	140
	Energy Distribution	140
	Rate of Heating	140
	Maximum Temperature	141
	Heat Generation and Temperature Distribution - Practical	
	Application	141
	Time at Temperature	141
	Cooling Rates	142
	Base Metal Mass	142
3.	Welding and Joining Processes	147
	Shielded Metal Arc Welding (SMAW): Process Fundamentals	151
	How the Process Works	152
	Covered Electrodes Used in the SMAW Process	152
	Joint Design and Preparation	154
	Gas Tungsten Arc Welding (GTAW): Process Description	155
	Process Advantages and Limitations	155
	Electrodes	155
	Joint Design	156
	Gas Metal Arc Welding (GMAW)	15 <i>7</i>
	Process Description	157
	Electrode Selection	158
	Joint Design	158
	Flux Cored Arc Welding (FCAW)	158
	Process Fundamentals	158
	Principal Applications of FCAW	159
	Shielding Gases	160
	Electrodes	160
	Submerged Arc Welding (SAW)	160
	Process Description	160

Contents	(xiii
	<u> </u>

	Materials	161
	Other Common Joining and Welding Processes	161
	Electroslag Welding (ESW)	161
	Plasma Arc Welding (PAW)	162
	Stud Welding	163
	Oxy-fuel Gas Welding (OFW)	164
	Brazing and Soldering	165
	Arc-Welding Power Sources	166
	Constant Voltage Power Source	167
	Constant-Current Power Source	16 <i>7</i>
	Transformers	168
	Thyristor-Silicon Controlled Rectifiers (SCR)	169
	Generators	170
	Alternators	170
4.	Physical Effect of Heat on Material During Welding	171
	The Molten Metal	172
	The Welded Plate	172
	Influence of Cooling Rate	173
5.	Stresses, Shrinkage and Distortion in Weldments	1 <i>7</i> 5
	Stresses in Weldments	176
	Definitions of Terms	176
	Development of Stresses	176
	Moving Localized Heat Source	176
	Distribution of Stress in a Simple Weld	1 <i>77</i>
	Residual Stresses	178
	Shrinkages	178
	Shrinkage Transverse to a Butt Weld	178
	Shrinkage Longitudinal to a Butt Weld	179
	Distortion in Weldments	180
	General Description	180
	Angular Distortion	181
	Longitudinal Bowing	181
	Buckling	181
	Corrective Measures	182
	Thermal Straightening	182
	Designing Weld Joints	183
	Assessing the Strength of Welds	183
	Throat of a Weld	184
	Sizing a Fillet Weld	185
	Stress Causing Fatigue in Weld	185

v) Contents

	Weld Size and Cost Control Control of Welding Stresses to Minimize Through-Thickness Failures	188 189
	Control of Welding Stresses to Millimize Through-Thickness ranges	109
6.	Welding Corrosion Resistant Alloys – Stainless Steel	191
	Corrosion Resistant Alloys (CRAs)	192
	Stainless Steel	192
	Welding Stainless Steel	192
	General Welding Characteristics	192
	Welding Processes	194
	Protection against Oxidation	194
	Welding Hygiene	194
	Austenitic Stainless Steels	195
	Metallurgical Concerns Associated with Welding Austenitic	
	Stainless Steels	195
	Mechanical Properties of Stainless Steels	196
	Welding of Austenitic Stainless Steels	196
	Superaustenitic Stainless Steels	198
	Material Properties and Applications	198
	Welding and Joining of Superaustenitic Stainless Steels	198
	Difficulties Associated with Welding Stainless Steel	199
	Martensitic Stainless Steels	202
	Properties and Application	202
	Welding Martensitic Stainless Steels	203
	Ferritic Stainless Steels	205
	Properties and Application	205
	Welding Ferritic Steel	206
	Precipitation Hardened Stainless Steels	206
	Properties and Application of Precipitation Hardened Steels	206
	Welding Precipitation Hardened (PH) Steels	207
	Duplex Stainless Steels	210
	Mechanical Properties	210
	Heat Treatment	212
	Welding and Fabrication	212
7.	Welding Non-Ferrous Metals and Alloys	215
	Aluminum and its Alloys	216
	The Confusing Thing about Aluminum	216
	Weld Hygiene	217
	Pre-Heating	217
	The Conductivity of Heat	217
	Welding Filler Metals	218
	Welding Aluminum with the Shield Metal Arc Welding (SMAW)	_,,
	Process	218

Contents

	Welding Aluminum with the Gas Tungsten Arc Welding (GTAW)	
	Process	220
	Type of Current and Electrode	220
	Grinding the Tip of the Electrodes	221
	Welding Aluminum with the Gas Metal Arc Welding (GMAW)	
	Process	221
	Power Source	221
	Wire Feeder	221
	Welding Guns	222
	Welding Technique	222
	The Push Technique	222
	Travel Speed	222
	Shielding Gas	223
	Welding Wire	223
	Friction Stir Welding (FSW)	223
	Nickel Alloys	224
	Heat Treatment	224
	Mechanical Properties	224
	Fabrication	225
	Precipitation-Hardenable Nickel-Based Alloys	225
	Heat Treatment of PH Nickel Alloys	225
	Mechanical Properties	225
	Welding	226
	Titanium Alloys	226
	Heat Treatment	227
	Alpha (α) Titanium	227
	Alpha/beta (α-β) Titanium	227
	Beta (β) Titanium	227
8.	Weld Defects and Inspection	229
	Weld Quality	229
	Acceptance Standards	229
	Discontinuities in Fusion Welded Joints	230
	Classification of Weld Joint Discontinuities	231
	Typical Weld Defects	232
	Porosity	233
	Inclusions	234
	Incomplete Fusion	234
	Inadequate Joint Penetration	234
	Undercut	234
	Underfill	235
	Overlap	235
	Cracks	235
	Surface Irregularities	236

(xvi)	Contents
-------	----------

	Base Metal Discontinuities Designing Weld Joints Basis of Welded Design Stresses in Pressure Vessels Pipelines	236 236 237 241 242
	ction 3 n-Destructive Testing	
1.	Introduction	247
2.	Visual Inspection (VT)	249
	Advantages of Visual Inspection	250
3.	Radiography	253
	Source of Radiation	254
	X-Rays	255
	Effect of Kv and MA	257
	Scatter Radiation	258
	X-Ray Equipment	259
	Power Sources	259
	Control Panel	260
	Gamma Rays	261
	Artificial Sources Half-Life	262
	Film	262 263
	Radiographic Exposure Techniques	265
	Single Wall Single Image (SWSI)	266
	Panoramic Technique	266
	Double Wall Single Image (DWSI)	266
	Double Wall Double Image (DWDI)	266
	Radiographic Image Quality	268
	Radiographic Contrast	268
	Subject Contrast	269
	Film Contrast	269
	Radiographic Definition	270
	Exposure Geometry	270
	Film Graininess	271
	Image Quality Indicator (IQI) or Penetrameter Radiation Safety	272 272
4.	Magnetic Particle Testing	275
	Principles of Magnetic Particle Testing	276
	Calculating Magnetizing Current	276

Contents	(xvii
Comercia	

	Types of Magnetizing Current	278
	Inspection Method	279
	Pre-Cleaning of Test Surface	279
	Drying after Preparation	279
	Application of the Current	279
	Alternating Current	279
	Direct Current	280
	Continuous or Residual Application of Current	280
	Dry Method of Inspection	281
	Wet Method of Inspection	281
	Viewing Conditions	282
	Inspection under Ultraviolet (Black) Light	282
5.	Penetrant Testing	283
	General Procedure	284
	Penetrant Materials	284
	Specific Requirements	284
	Control of Contaminants	284
	Surface Preparation	285
	Drying after Preparation	286
	Techniques	286
	Techniques for Standard Temperatures	286
	Penetrant Application	286
	Penetration Time (Dwell Time)	287
	Excess Penetrant Removal	287
	Removing Excess Water-Washable Penetrant	287
	Removing Excess Post-Emulsifying Penetrant	287
	Removing Excess Solvent-Removable Penetrant	287
	Drying Process after Excess Penetrant Removal	287
	Developing	288
	Interpretation	288
	Final Interpretation	288
	Characterizing Indication(s)	288
	Color Contrast Penetrant	289
	Fluorescent Penetrant	289
	Evaluation	290
	Liquid Penetrant Comparator	290
6.	Ultrasonic Testing	293
	Theory of Sound Wave and Propagation	294
	Theory of Sound	295
	Piezoelectricity	296
	Sound Beam Reflection	296
	Sound Beam Frequencies	296

tents
te

	Sound Beam Velocities	297	
	Snell's Law of Reflection and Refraction	298	
	Understanding the Variables Associated with Ultrasonic	2.50	
	Testing	299	
	Selection of Test Equipment	300	
	A-Scan Equipment	301	
	B-Scan Equipment	301	
	C-Scan Equipment	301	
	Testing Procedure	302	
	Role of Coupling in Testing	303	
7.	Eddy Current Testing	305	
	Method	305	
8.	Acoustic Emission Testing (AET)	307	
	Ongoing Developments in the AET Field	307	
	Future of AET	308	
	Tatale Sivili	300	
9.	Ferrite Testing	321	
	Effect of Ferrite in Austenitic Welds	321	
10.	Pressure Testing	323	
	Purpose	323	
	Method	323	
	Test Medium	324	
	Sensitivity of the Test	324	
	Proof Testing	324	
	Practical Application of Hydrostatic Testing	325	
	Critical Flaw Size	327	
Sec	ction 4		
Coc	des and Standards		
1.	Introduction	331	
2.	Codes, Specifications and Standards	333	
	American Society of Mechanical Engineers (ASME)	334	
	Background and History	334	
	Present Day ASME	336	

Contents	xix
List of all Twelve ASME Boiler and Pressure Vessels Codes	336
ASME Section VIII, Division 1 (Pressure Vessels)	337
ASME Code for Pressure Piping	337
ASME Section V	340
The National Board	340
The National Board Inspection Code (NBIC)	342
American Petroleum Institute	342
API 653 (Above-Ground Storage Tanks)	343
API 510 (Pressure Vessels)	343
API 570 (Pressure Piping)	343
API RP 579 (Fitness for Service)	343
API RP 580 (Risk Based Inspection)	343
American Society for Testing Materials (ASTM)	343

Index