Contents

	vledgments l Constants	xix xxiii xxv
Part I	Classical Thermal Physics: The Microcanonica Ensemble	
Section	IA Introduction to Classical Thermal Physics Concepts: The First and Second Laws of Thermodynamics	
Снартег	R 1	
<u>Introdu</u>	ction: Basic Concepts	5
1.1	STATISTICAL AND THERMAL PHYSICS	5
1.2	TEMPERATURE	8
1.3	ideal gas equation of state	9
1.4	EQUATIONS OF STATE FOR REAL GASES	11
1.5	equation of state for a paramagnet	12
1.6	KINETIC THEORY OF GASES AND THE EQUIPARTITION OF ENERGY THEOREM	13
1.7	THERMAL ENERGY TRANSFER PROCESSES:	
	HEAT ENERGY	19
	PROBLEMS CHAPTER 1	20
Снарты	r 2	
Energy	: The First Law	23
2.1	THE FIRST LAW OF THERMODYNAMICS	23
2.2	APPLICATION OF THE FIRST LAW TO A FLUID	
	SYSTEM	25
		vii

viii ■ Contents

	2.3	TERMINOLOGY	27
	2.4	P-V DIAGRAMS	28
	2.5	QUASI-STATIC ADIABATIC PROCESSES FOR	
		AN IDEAL GAS	29
	2.6	MAGNETIC SYSTEMS	30
	2.7	PARAMAGNETIC SYSTEMS	33
	2.8	MAGNETIC COOLING	36
	2.9	GENERAL EXPRESSION FOR WORK DONE	37
	2.10	HEAT CAPACITY	38
	2.11	QUASI-STATIC ADIABATIC PROCESS FOR AN IDEAL GAS REVISITED	41
	2.12	THERMAL EXPANSION COEFFICIENT AND	
		ISOTHERMAL COMPRESSIBILITY	42
		PROBLEMS CHAPTER 2	43
C	HAPTER	3	
Eı	ntropy	r: The Second Law	47
	3.1	INTRODUCTION	47
	3.2	HEAT ENGINES—THE CARNOT CYCLE	47
	3.3	CARNOT REFRIGERATOR	50
	3.4	ENTROPY	52
	3.5	ENTROPY CHANGES FOR REVERSIBLE CYCLIC	
		PROCESSES	54
	3.6	ENTROPY CHANGES IN IRREVERSIBLE PROCESSES	56
	3.7	THE SECOND LAW OF THERMODYNAMICS	58
	3.8	the fundamental relation	59
	3.9	entropy changes and <i>T-s</i> diagrams	59
	3.10	THE KELVIN TEMPERATURE SCALE	61
	3.11	ALTERNATIVE STATEMENTS OF THE SECOND LAW	61
	3.12	GENERAL FORMULATION	64
	3.13	THE THERMODYNAMIC POTENTIALS	67
		PROBLEMS CHAPTER 3	69

SECTION IB Microstates and the Statistical Interpretation of Entropy

Снарте	₹ 4	
Micros	tates for Large Systems	75
4.1	INTRODUCTION	75
4.2	MICROSTATES—CLASSICAL PHASE SPACE APPROACH	76
4.3	QUANTUM MECHANICAL DESCRIPTION OF AN IDEAL GAS	79
4.4	QUANTUM STATES FOR AN IDEAL LOCALIZED SPIN SYSTEM	81
4.5	THE NUMBER OF ACCESSIBLE QUANTUM STATES	83
	PROBLEMS CHAPTER 4	91
Chapte Entrop	R 5 y and Temperature: Microscopic	
Statisti	cal Interpretation	95
5.1	INTRODUCTION: THE FUNDAMENTAL POSTULATE	95
5.2	EQUILIBRIUM CONDITIONS FOR TWO INTERACTING SPIN SYSTEMS	96
5.3	GENERAL EQUILIBRIUM CONDITIONS FOR INTERACTING SYSTEMS: ENTROPY AND TEMPERATURE	101
5.4	THE ENTROPY OF IDEAL SYSTEMS	103
5.5	THERMODYNAMIC ENTROPY AND ACCESSIBLE	
	STATES REVISITED	107
	PROBLEMS CHAPTER 5	111
Снарте	r 6	
Zero k	Celvin and the Third Law	115
6.1	INTRODUCTION	115
6.2	ENTROPY AND TEMPERATURE	116
6.3	TEMPERATURE PARAMETER FOR AN IDEAL SPIN SYSTEM	117

x ■ Contents

6.4	TEMPERATURE PARAMETER FOR AN IDEAL GAS	119
6.5	THE APPROACH TO $T = 0$ K	120
6.6	ENTROPY-SQUEEZING PROCESSES	121
6.7	MULTISTAGE PROCESSES	123
6.8	THE THIRD LAW	124
6.9	SUMMARY OF THE LAWS OF	
	THERMODYNAMICS	125
	PROBLEMS CHAPTER 6	127
Section	IC Applications of Thermodynamics to Gases and Condensed Matter, Phase Transitions, and Critical Phenomena	
Снарте	r 7	
Applic	ations of Thermodynamics to Gases: The	
Maxwe	ell Relations	131
7.1	INTRODUCTION	131
7.2	ENTHALPY	132
7.3	HELMHOLTZ POTENTIAL F	134
7.4	GIBBS POTENTIAL G	136
7.5	THE GIBBS POTENTIAL, THE HELMHOLTZ POTENTIAL, AND THE CHEMICAL	
	POTENTIAL	138
7.6	CHEMICAL EQUILIBRIUM	139
7.7	MAXWELL'S THERMODYNAMIC RELATIONS	141
7.8	APPLICATIONS OF THE MAXWELL RELATIONS	145
7.9	THE ENTROPY EQUATIONS	153
	PROBLEMS CHAPTER 7	156
Снарте	r 8	
Applic	ations of Thermodynamics to Condensed Matter	159
8.1	INTRODUCTION	159
8.2	SPECIFIC HEATS OF SOLIDS—THE LAW OF DULONG AND PETIT	160

Contents	хi

8.3	HEAT CAPACITIES OF LIQUIDS	163
8.4	THE SPECIFIC HEAT DIFFERENCE c_P – c_V	163
8.5	APPLICATION OF THE ENTROPY EQUATIONS TO	
	SOLIDS AND LIQUIDS	165
8.6	maxwell relations for a magnetic system	166
8.7	APPLICATIONS OF THE MAXWELL RELATIONS TO	
	ideal paramagnetic systems	167
	PROBLEMS CHAPTER 8	170
Снарты	R 9	
	Transitions and Critical Phenomena	173
9.1	INTRODUCTION	173
9.2	NONIDEAL SYSTEMS	174
9.3	CLASSIFICATION OF PHASE TRANSITIONS	177
9.4	THE CLAUSIUS-CLAPEYRON AND	
	THE EHRENFEST EQUATIONS	179
9.5	CRITICAL EXPONENTS FOR CONTINUOUS PHASE	
	TRANSITIONS	182
9.6	LANDAU THEORY OF CONTINUOUS TRANSITIONS	186
	PROBLEMS CHAPTER 9	190
Part II	Quantum Statistical Physics and Thermal Physics Applications	
SECTION	IIA The Canonical and Grand Canonical Ensembles and Distributions	
Снарте	er 10	
Ensem	bles and the Canonical Distribution	197
10.1	INTRODUCTION	197
10.2	2 STATISTICAL METHODS: INTRODUCTION TO	
	PROBABILITY THEORY	198
	10.2.1 Discrete Variables and Continuous Variables	198
	10.2.2 Joint Probabilities	200
	10.2.3 The Binomial Distribution	201

xii ■ Contents

12.2	QUANTUM DISTRIBUTIONS	240
12.1	INTRODUCTION: FERMIONS AND BOSONS	237
CHAPTER The Qu	R 12 Jantum Distribution Functions	237
SECTION	IIB Quantum Distribution Functions, Fermi-Dirac and Bose-Einstein Statistics, Photons, and Phonons	
	PROBLEMS CHAPTER 11	233
11.7	THE GRAND POTENTIAL	229
	function and the grand sum	228
11.6	relationship between the partition	
11.5	MEAN VALUES	227
1,,,,	TO AN IDEAL GAS	226
=	THE GRAND CANONICAL DISTRIBUTION APPLIED	223
	THE GRAND CANONICAL DISTRIBUTION	223
	GENERAL EQUILIBRIUM CONDITIONS	221
	INTRODUCTION	221
CHAPTER The Car	k 11 and Canonical Distribution	221
	PROBLEMS CHAPTER 10	218
	THE PARTITION FUNCTION FOR AN IDEAL GAS	217
	THE BOLTZMANN DEFINITION OF THE ENTROPY	215
	CHOICE OF STATISTICAL ENSEMBLE	214
10.7	FUNCTION AND THE HELMHOLTZ POTENTIAL FLUCTUATIONS	211 213
10.6	DISTRIBUTION RELATIONSHIP BETWEEN THE PARTITION	209
10.5	CALCULATION OF THERMODYNAMIC PROPERTIES FOR A SPIN SYSTEM USING THE CANONICAL	
	THE CANONICAL DISTRIBUTION	205
	ENSEMBLES IN STATISTICAL PHYSICS	203

	Co	ontents = xiii
12.3	THE FD DISTRIBUTION	241
12.4	THE BE DISTRIBUTION	242
12.5	FLUCTUATIONS	243
12.6	THE CLASSICAL LIMIT	245
12.7	THE EQUATION OF STATE	248
	PROBLEMS CHAPTER 12	251
CHAPTER	. 13	
Ideal Fe	ermi Gas	253
13.1	INTRODUCTION	253
13.2	THE FERMI ENERGY	253
13.3	FERMI SPHERE IN MOMENTUM SPACE	255
13.4	MEAN ENERGY OF IDEAL FERMI GAS AT $T = 0$ K	257
13.5	APPROXIMATE EXPRESSIONS FOR THE HEAT CAPACITY AND MAGNETIC SUSCEPTIBILITY OF	OF
	an ideal fermi gas	259
13.6	SPECIFIC HEAT OF A FERMI GAS	260
13.7	Pauli Paramagnetism	264
13.8	THE PRESSURE OF A FERMI GAS	267
13.9	STARS AND GRAVITATIONAL COLLAPSE	267
	PROBLEMS CHAPTER 13	269
Снартек		
	ose Gas	273
	INTRODUCTION	273
14.2	LOW-TEMPERATURE BEHAVIOR OF THE CHEMICAL POTENTIAL	273
14.3	THE BOSE-EINSTEIN CONDENSATION TEMPERATURE	275
14.4	HEAT CAPACITY OF AN IDEAL BOSE GAS	278
14.5	THE PRESSURE AND ENTROPY OF A BOSE GOAT LOW TEMPERATURES	

14.6	THE BOSE-EINSTEIN CONDENSATION	
	PHENOMENA IN VARIOUS SYSTEMS	280
	PROBLEMS CHAPTER 14	282
Снартег	: 15	
Photon	s and Phonons—The "Planck Gas"	285
15.1	INTRODUCTION	285
15.2	electromagnetic radiation in a cavity	286
15.3	THE PLANCK DISTRIBUTION	288
15.4	THE RADIATION LAWS	289
15.5	radiation pressure and the equation of	
	STATE FOR RADIATION IN AN ENCLOSURE	292
15.6	PHONONS IN CRYSTALLINE SOLIDS	293
15.7	THE SPECIFIC HEAT OF A SOLID	295
15.8	THE EINSTEIN MODEL FOR THE SPECIFIC HEAT OF SOLIDS	297
15.0	THE DEBYE MODEL FOR THE SPECIFIC	297
13.3	HEAT OF SOLIDS	299
	PROBLEMS CHAPTER 15	301
SECTION	IIC The Classical Ideal Gas, Maxwell-Boltzmann	
SECTION 1	Statistics, Nonideal Systems	
Снартей	x 16	
The Cla	assical Ideal Gas	305
16.1	INTRODUCTION	305
16.2	THE PARTITION FUNCTION FOR AN IDEAL	2.0.0
	CLASSICAL GAS	306
	THERMODYNAMICS OF AN IDEAL GAS	308
16.4	CLASSICAL MECHANICS DESCRIPTION OF THE IDEAL GAS	309
16.5	IDEAL GAS OF PARTICLES WITH INTERNAL	
	ENERGIES	311

16.6	PROOF OF THE EQUIPARTITION OF ENERGY	
	THEOREM	316
16.7	THE MAXWELL VELOCITY DISTRIBUTION	317
	PROBLEMS CHAPTER 16	321
Снартея		
Nonide	eal Systems	323
1 <i>7</i> .1	INTRODUCTION	323
1 <i>7</i> .2	NONIDEAL GASES	323
17.3	EQUATIONS OF STATE FOR NONIDEAL GASES	329
17.4	nonideal spin systems: mean	
	FIELD THEORY	331
1 <i>7</i> .5	INTRODUCTION TO THE ISING MODEL	335
17.6	FERMI LIQUIDS	338
1 <i>7.7</i>	NONIDEAL BOSE SYSTEMS—BOSE LIQUIDS	342
	PROBLEMS CHAPTER 17	345
Section	IID The Density Matrix, Reactions and Related Processes, and Introduction to Irreversible Thermodynamics	
Снарте	₹ 18	
The De	ensity Matrix	349
18.1	INTRODUCTION	349
18.2	THE DENSITY MATRIX FORMALISM	350
18.3	FORM OF THE DENSITY MATRIX IN THE THREE	
	STATISTICAL ENSEMBLES	353
18.4	DENSITY MATRIX CALCULATIONS	354
18.5	POLARIZED PARTICLE BEAMS	359
18.6	CONNECTION OF THE DENSITY MATRIX TO THE CLASSICAL PHASE SPACE	
	REPRESENTATION	360
	PROBLEMS CHAPTER 18	362

xvi ■ Contents

CHAPTER	. 19	
Reactio	ns and Related Processes	365
19.1	INTRODUCTION	365
19.2	THE PARTITION FUNCTION FOR A GASEOUS	
	MIXTURE OF DIFFERENT MOLECULAR SPECIES	366
19.3	THE LAW OF MASS ACTION	367
19.4	ADSORPTION ON SURFACES	369
19.5	CHARGE CARRIERS IN SEMICONDUCTORS	374
	PROBLEMS CHAPTER 19	377
CHAPTER		
Introdu	ction to Irreversible Thermodynamics	379
20.1	INTRODUCTION	379
20.2	ENTROPY PRODUCTION IN HEAT FLOW	
	PROCESSES	380
20.3	ENTROPY PRODUCTION IN COUPLED FLOW PROCESSES	381
20.4	THERMO-OSMOSIS, THERMOMOLECULAR	
	PRESSURE DIFFERENCE, AND THERMOMECHANICAL EFFECT	385
20.5	THERMOELECTRICITY	389
	THE SEEBECK AND PEITIER EFFECTS	392
	THE THOMSON EFFECT	395
20.7		
	PROBLEMS CHAPTER 20	396
Appendi		
Useful	Mathematical Relationships	397
FINI	te series summations	397
STIR	LING'S FORMULA FOR THE LOGARITHM OF <i>N</i> !	397
DEFI	nite integrals involving exponential	
	FUNCTIONS	308

Appendix B	
The Binomial Distribution	399
GAUSSIAN APPROXIMATION TO THE BINOMIAL DISTRIBUTION	401
APPENDIX C	
Elements of Quantum Mechanics	403
PARTICLE IN A BOX EIGENSTATES AND EIGENVALUES	404
THE HARMONIC OSCILLATOR	405
STATE VECTORS AND DIRAC NOTATION	407
Appendix D	
The Legendre Transform in Thermodynamics	409
INTRODUCTION TO THE LEGENDRE TRANSFORM	409
THE LEGENDRE TRANSFORM AND THERMODYNAMIC POTENTIALS	410
Appendix E	
Recommended Texts on Statistical and Thermal Physics	413
INTRODUCTORY LEVEL	413
ADVANCED LEVEL	413
COMPUTER SIMULATIONS	414
INDEX	415