Nanotechnology

Understanding Small Systems : SECOND EDITION .

Ben Rogers Sumita Pennathur Jesse Adams

Contents

Dra	face.	3737
Pre	гасе.	xv

Acknowledgments, xvii

Authors, xix

Снарте	r 1 ■ E	Big Picture and Principles of the Small World	1			
1,1	UND	erstanding the atom: <i>ex nihilo nihil fit</i>	3			
1.2	NAN	NANOTECHNOLOGY STARTS WITH A DARE: FEYNMAN'S				
	BIG L	ITTLE CHALLENGES	10			
1.3	WHY	ONE-BILLIONTH OF A METER IS A BIG DEAL	14			
1.4	THIN	KING IT THROUGH: THE BROAD IMPLICATIONS				
	OF N	ANOTECHNOLOGY	16			
	1.4.1	Gray Goo	18			
	1.4.2	Environmental Impact	19			
	1.4.3	The Written Word	20			
1.5	THE	THE BUSINESS OF NANOTECH: PLENTY OF ROOM				
	AT TH	HE BOTTOM LINE TOO	22			
	1.5.1	Products	24			
HO	HOMEWORK EXERCISES					
	Short	Answers	25			
	Writin	ng Assignments	26			
REF	ERENCI	ES	26			
REC	OMME	NDATIONS FOR FURTHER READING	27			
Спарте	R 2 ■ 1	ntroduction to Miniaturization	29			
2.1	BACK	GROUND: THE SMALLER, THE BETTER	29			
2.2	SCAL	ING LAWS	30			
	2.2.1	The Elephant and the Flea	30			
	2.2.2	Scaling in Mechanics	34			
			vii			

	2.2.3	Scaling in Electricity and Electromagnetism	3/
	2.2.4	Scaling in Optics	39
	2.2.5	Scaling in Heat Transfer	41
	2.2.6	Scaling in Fluids	43
	2.2.7	Scaling in Biology	46
2.3	ACCL	JRACY OF THE SCALING LAWS	47
HO	MEWO	RK EXERCISES	4 9
	Short	Answers	52
REC	OMME	ndations for further reading	52
Снарте	r 3 ■ li	ntroduction to Nanoscale Physics	53
3.1	BACK	GROUND: NEWTON NEVER SAW A NANOTUBE	53
3.2		HUNDRED HOURS AND EIGHT MINUTES OF	
		OSCALE PHYSICS	53
3.3		BASICS OF QUANTUM MECHANICS	54
	3.3.1	Atomic Orbitals (Not Orbits)	55
	3.3.2	Electromagnetic Waves	57
		3.3.2.1 How EM Waves Are Made	60
	3.3.3	The Quantization of Energy	61
	3.3.4	Atomic Spectra and Discreteness	63
	3.3.5	The Photoelectric Effect	64
	3.3.6	Wave-Particle Duality: The Double-Slit Experiment	69
		3.3.6.1 Bullets	69
		3.3.6.2 Water Waves	70
		3.3.6.3 Electrons	71
	3.3.7	The Uncertainty Principle	73
	3.3.8	Particle in a Well	75
3.4		MARY	79
		PRK EXERCISES	80
REC	OMME	ENDATIONS FOR FURTHER READING	82
Снарті	R 4 ■ 1	Nanomaterials	83
4.1	BACk	kground: matter <i>matters</i>	83
4.2	BON	ding atoms to make molecules and solids	83
	4.2.1	Ionic Bonding	84
	4.2.2	Covalent Bonding	87

	4.2.3	Metallic	Bonding	87
	4.2.4	Walking	through Waals: van der Waals Forces	88
		4.2.4.1	The Dispersion Force	90
		4.2.4.2	Repulsive Forces	90
		4.2.4.3	The van der Waals Force versus Gravity	91
4.3	CRYS	TAL STRU	JCTURES	93
4.4	STRU	CTURES	SMALL ENOUGH TO BE DIFFERENT (AND USEFUL)	96
	4.4.1	Particles	S	97
		4.4.1.1	Colloidal Particles	100
	4.4.2	Wires		101
	4.4.3	Films, L	ayers, and Coatings	103
	4.4.4	Porous l	Materials	105
	4.4.5	Small-G	rained Materials	107
	4.4.6	Molecul	les	110
		4.4.6.1	Carbon Fullerenes and Nanotubes	110
		4.4.6.2	Dendrimers	115
		4.4.6.3	Micelles	116
4.5	SUMI	MARY		117
HO	MEWO	RK EXER	CISES	118
REC	OMME	NDATIO	NS FOR FURTHER READING	121
Снарте	r 5 ■ 1	Nanome	chanics	123
5.1	BACK	GROUN	D: THE UNIVERSE MECHANISM	123
	5.1.1	Nanom	echanics: Which Motions and Forces Make the Cut?	124
5.2	A HI	GH-SPEE	D REVIEW OF MOTION: DISPLACEMENT,	
	VELC	CITY, AC	CCELERATION, AND FORCE	125
5.3			ANICAL OSCILLATORS: AMS AND ATOMS	128
	5.3.1	Beams		128
		5.3.1.1	Free Oscillation	129
		5.3.1.2	Free Oscillation from the Perspective of Energy	
			(and Probability)	132
		5.3.1.3	Forced Oscillation	134
	5.3.2	Atoms		140
		5.3.2.1	The Lennard–Jones Interaction:	
			How an Atomic Rond Is Like a String	140

		5.3.2.2	the Quantum Mechanics of Oscillating Atoms	144
		5.3.2.3	The Schrödinger Equation and the	
			Correspondence Principle	148
		5.3.2.4	Phonons	153
	5.3.3	Nanom	nechanical Oscillator Applications	155
		5.3.3.1	Nanomechanical Memory Elements	156
		5.3.3.2	Nanomechanical Mass Sensors:	
			Detecting Low Concentrations	160
5.4	FEELI	ng fain	NT FORCES	164
	5.4.1	Scanni	ng Probe Microscopes	164
		5.4.1.1	Pushing Atoms around with the Scanning Tunneling Microscope	164
		5.4.1.2	Skimming across Atoms with the Atomic	
			Force Microscope	165
		5.4.1.3	Pulling Atoms Apart with the AFM	169
		5.4.1.4	Rubbing and Mashing Atoms with the AFM	173
	5.4.2	Mechai	nical Chemistry: Detecting Molecules with	
		Bendin	g Beams	175
5.5	SUM	MARY		178
HO	MEWO	RK EXER	RCISES	179
REC	OMME	NDATIC	ONS FOR FURTHER READING	182
Снарте	R 6 ■ 1	Nanoele	ectronics	185
6.1	BACk	GROUN	ND: THE PROBLEM (OPPORTUNITY)	185
6.2	ELEC.	tron ei	nergy bands	185
6.3			IN SOLIDS: CONDUCTORS, INSULATORS,	
			ONDUCTORS	188
6.4	FER <i>N</i>	11 ENERC	SY	191
6.5	THE	DENSITY	OF STATES FOR SOLIDS	193
	6.5.1	Electro	on Density in a Conductor	195
6.6			N THE VOLUME! (HOW TO MAKE A SOLID	
			IKE AN ATOM)	196
6.7	•		CONFINEMENT	197
	6.7.1		um Structures	199
		6.7.1.1	Uses for Quantum Structures	200
	6.7.2	How Si	mall Is Small Enough for Confinement?	201
		6.7.2.1	Conductors: The Metal-to-Insulator Transition	203

			6.7.2.2	Semiconductors: Confining Excitons	204
		6.7.3	The Ban	nd Gap of Nanomaterials	206
	6.8 TUNNELING				
	6.9 SINGLE ELECTRON PHENOMENA				212
		6.9.1	Two Ru	les for Keeping the Quantum in Quantum Dot	213
			6.9.1.1	Rule 1: The Coulomb Blockade	213
			6.9.1.2	Rule 2: Overcoming Uncertainty	216
		6.9.2	The Sin	gle-Electron Transistor	217
	6.10	MOLE	CULAR	ELECTRONICS	220
		6.10.1	Molecu	lar Switches and Memory Storage	222
	6.11	SUMN	<i>A</i> ARY		224
	HOM	1EWOI	RK EXER	CISES	224
	RECO	OMME	NDATIO	ns for further reading	227
_		7	1	1 II (T)	220
				le Heat Transfer	229
	7.1			D: HOT TOPIC	229
	7.2			NANOSCALE HEAT	229
	7 2	7.2.1		ann's Constant	230
	7.3		DUCTIO		230
		7.3.1		ermal Conductivity of Nanoscale Structures	234
				The Mean Free Path and Scattering of Heat Carriers	234
			7.3.1.2	Thermoelectrics: Better Energy Conversion with Nanostructures	237
			7.3.1.3	The Quantum of Thermal Conduction	239
	7.4	CON	VECTION	-	240
	7.5	RADI	ATION		241
		7.5.1	Increase	ed Radiation Heat Transfer: Mind the Gap!	242
	7.6	SUMN	ИARY	•	243
	НΟΝ	AEWO:	RK EXER	CISES	244
	RECO	OMME.	NDATIO	NS FOR FURTHER READING	246
		0 1	, ,		0.47
_			Nanopho		247
	8.1	_	GROUN HE PHO	ID: THE LYCURGUS CUP AND THE BIRTH	247
	8.2			PROPERTIES OF NANOMATERIALS	248
	0,2			Absorption	248
				AMANALIZERANI	

		8.2.2	Photon 1	Emission	249
		8.2.3	Photon S	Scattering	250
		8.2.4	Metals		251
			8.2.4.1	Permittivity and the Free Electron Plasma	252
			8.2.4.2	The Extinction Coefficient of Metal Particles	254
			8.2.4.3	Colors and Uses of Gold and Silver Particles	257
		8.2.5	Semicor	nductors	258
			8.2.5.1	Tuning the Band Gap of Nanoscale Semiconductors	258
			8.2.5.2	The Colors and Uses of Quantum Dots	259
			8.2.5.3	Lasers Based on Quantum Confinement	261
	8.3	NEAR-	FIELD LI	IGHT	264
		8.3.1	The Lim	nits of Light: Conventional Optics	264
		8.3.2	Near-Fie	eld Optical Microscopes	266
	8.4	OPTIC	CAL TWE	EEZERS	269
	8.5	PHOT	ONIC CI	rystals: a band gap for photons	269
	8.6	SUMN	1ARY		270
	HOM	MEMOL	RK EXER	CISES	271
	REC	OMMEI	NDATIO	ns for further reading	273
		0 1			0.75
_		_		le Fluid Mechanics	275
	9.1			D: BECOMING FLUENT IN FLUIDS	275
		9.1.1	-	g a Fluid the Way It Should Be Treated:	275
			9.1.1.1	ncept of a Continuum	2/3
			9.1.1.1	Fluid Motion, Continuum Style: The Navier–Stokes Equations	276
			9.1.1.2		283
	9.2	FLUID		E NANOSCALE: MAJOR CONCEPTS	284
	J.,_	9.2.1		ing in Molasses: Life at Low Reynolds Numbers	284
			9.2.1.1	Reynolds Number	285
		9.2.2		Charges and the Electrical Double Layer	286
			9.2.2.1	Surface Charges at Interfaces	287
			9.2.2.2	•	
			<i>x</i>	Electrical Double Layer	288
			9.2.2.3	Electrokinetic Phenomena	291
		9.2.3	Small Pa	articles in Small Flows: Molecular Diffusion	293
	9.3	HOW	FLUIDS	FLOW AT THE NANOSCALE	297

	9.3.1	Pressure	e-Driven Flow	298
	9.3.2	•		
	9.3.3			
9.3.4 Superposition of Flows			306	
	9.3.5	Ions and	d Macromolecules Moving through a Channel	306
		9.3.5.1	Stokes Flow around a Particle	307
		9.3.5.2	The Convection–Diffusion–Electromigration Equation: Nanochannel Electrophoresis	311
		9.3.5.3	Macromolecules in a Nanofluidic Channel	314
9.4	APPLI	CATION	IS OF NANOFLUIDICS	315
	9.4.1	Analysi	s of Biomolecules: An End to Painful Doctor Visits?	316
	9.4.2	EO Pun	nps: Cooling Off Computer Chips	318
	9.4.3	Other A	Applications	319
9.5	SUMN	1ARY	i .	320
HON	MEWO!	RK EXER	CISES	320
RECO	OMME	NDATIO	ONS FOR FURTHER READING	322
			iotechnology	323
			ID: OUR WORLD IN A CELL	323
10.2			ON: HOW BIOLOGY "FEELS" AT THE	201
		OMETER		- 325
	10.2.1	Biologic Essentia	cal Shapes at the Nanoscale: Carbon and Water Are the al Tools	325
	10.2.2	Inertia	and Gravity Are Insignificant: The Swimming Bacterium	326
	10.2.3	Randon	n Thermal Motion	328
10.3	THE N	<i>A</i> ACHIN	IERY OF THE CELL	331
	10.3.1	Sugars .	Are Used for Energy (but also Structure)	332
		10.3.1.1	! Glucose	332
	10.3.2	Fatty A	cids Are Used for Structure (but also Energy)	333
		10.3.2.1	l Phospholipids	336
	10.3.3	Nucleot	tides Are Used to Store Information and	
		Carry C	Chemical Energy	339
		10.3.3.1	l Deoxyribonucleic Acid	339
		10.3.3.2	2 Adenosine Triphosphate	343
	10.3.4	Amino	Acids Are Used to Make Proteins	344
		10.3.4.1	1 ATP Synthase	347

xiv ■ Contents

10.4 APPLICATIONS OF NANOBIOTECHNOLOGY	349
10.4.1 Biomimetic Nanostructures	349
10.4.2 Molecular Motors	349
10.5 SUMMARY	350
HOMEWORK EXERCISES	350

352

RECOMMENDATIONS FOR FURTHER READING

GLOSSARY, 353

INDEX, 365