HANDBOOK OF LEARNING AND APPROXIMATE DYNAMIC PROGRAMMING

EDITED BY

JENNIE SI ANDREW G. BARTO WARREN B. POWELL DONALD WUNSCH II

EEE Press Series on Computational Intelligence
David B. Fogel, Series Editor

Contents

	_	eword hankar Sastry	1
1		P: Goals, Opportunities and Principles and Werbos	3
	1.1	Goals of This Book	3
	1.2	Funding Issues, Opportunities and the Larger Context	5
	1.3	Unifying Mathematical Principles and Roadmap of the Field	17
Pa	ırt I	Overview	45
2	Rein A	nforcement Learning and Its Relationship to Supervised Learning andrew G. Barto and Thomas G. Dietterich	47
	2.1	Introduction	47
	2.2	Supervised Learning	48
	2.3	Reinforcement Learning	50
	2.4	Sequential Decision Tasks	54
	2.5	Supervised Learning for Sequential Decision Tasks	58
	2.6	Concluding Remarks	60
3		del-Based Adaptive Critic Designs Ivia Ferrari and Robert F. Stengel	65
	3.1	Introduction	65
	3.2	Mathematical Background and Foundations	67
	3.3	Adaptive Critic Design and Implementation	74
	3.4	Discussion	88
	3.5	Summary	89

vi CONTENTS

4		lance in the Use of Adaptive Critics for Control orge G. Lendaris and James C. Neidhoefer	97
	4.1	Introduction	97
	4.2	Reinforcement Learning	98
	4.3	Dynamic Programming	99
	4.4	Adaptive Critics: "Approximate Dynamic Programming"	99
	4.5	Some Current Research on Adaptive Critic Technology	103
	4.6	Application Issues	105
	4.7	Items for Future ADP Research	118
5		ct Neural Dynamic Programming nnie Si, Lei Yang and Derong Liu	125
	5.1	Introduction	125
	5.2	Problem Formulation	126
	5.3	Implementation of Direct NDP	127
	5.4	Comparisons	133
	5.5	Continuous State Control Problem	138
	5.6	Call Admission Control for CDMA Cellular Networks	141
	5.7	Conclusions and Discussions	146
6	Pro	Linear Programming Approach to Approximate Dynamic gramming aniela Pucci de Farias	153
	6.1	Introduction	153
	6.2	Markov Decision Processes	158
	6.3	Approximate Linear Programming	159
	6.4	State-Relevance Weights and the Performance of ALP Policies	160
	6.5	Approximation Error Bounds	162
	6.6	Application to Queueing Networks	165
	6.7	Efficient Constraint Sampling Scheme	167
	6.8	Discussion	173
7		nforcement Learning in Large, High-Dimensional State Spaces reg Grudic and Lyle Ungar	179
	7.1	Introduction	179
	7.2	Theoretical Results and Algorithm Specifications	185
	7.3	Experimental Results	192
	7.4	Conclusion	198

		CONTENTS	vii
8		archical Decision Making olcolm Ryan	203
	8.1	Introduction	203
	8.2	Reinforcement Learning and the Curse of Dimensionality	204
	8.3	Hierarchical Reinforcement Learning in Theory	209
	8.4	Hierarchical Reinforcement Learning in Practice	217
	8.5	Termination Improvement	221
	8.6	Intra-Behavior Learning	223
	8.7	Creating Behaviors and Building Hierarchies	225
	8.8	Model-based Reinforcement Learning	225
	8.9	Topics for Future Research	226
	8.10	Conclusion	227
Par	rt II	Technical Advances	233
9	Appr	roved Temporal Difference Methods with Linear Function roximation nitri P. Bertsekas, Vivek S. Borkar, and Angelia Nedich	235
	9.1	Introduction	235
	9.2	Preliminary Analysis	241
	9.3	Convergence Analysis	243
	9.4	Relations Between λ -LSPE and Value Iteration	245
	9.5	Relation Between λ -LSPE and LSTD	252
	9.6	Computational Comparison of λ -LSPE and TD(λ)	253
10	Reso	roximate Dynamic Programming for High-Dimensional urce Allocation Problems rren B. Powell and Benjamin Van Roy	261
	10.1	Introduction	261
	10.2	Dynamic Resource Allocation	262
	10.3	Curses of Dimensionality	265
	10.4	Algorithms for Dynamic Resource Allocation	266
	10.5	Mathematical programming	271
	10.6	Approximate Dynamic Programming	275
	10.7	Experimental Comparisons	277
	10.8	Conclusion	279

viii CONTENTS

11		rchical Approaches to Concurrency, Multiagency, and all Observability	285
		lhar Mahadevan, Mohammad Ghavamzadeh, Khashayar Rohanimanesh,	and
Ge	orgios !	Theocharous	
	11.1	Introduction	285
	11.2	Background	287
	11.3	Spatiotemporal Abstraction of Markov Processes	289
	11.4	Concurrency, Multiagency, and Partial Observability	294
	11.5	Summary and Conclusions	306
12		ning and Optimization — From a System Theoretic Perspective Ren Cao	311
	12.1	Introduction	311
	12.2	General View of Optimization	313
	12.3	Estimation of Potentials and Performance Derivatives	316
	12.4	Gradient-Based Optimization	323
	12.5	Policy Iteration	324
	12.6	Constructing Performance Gradients with Potentials as Building Blocks	328
	12.7	Conclusion	330
13	Robi	ust Reinforcement Learning Using Integral-Quadratic	
~~		straints	337
	Ch	arles W. Anderson, Matt Kretchmar, Peter Young, and Douglas Hittle	
	13.1	Introduction	337
	13.2	Integral-Quadratic Constraints and Stability Analysis	338
	13.3	Reinforcement Learning in the Robust Control Framework	340
	13.4	Demonstrations of Robust Reinforcement Learning	346
	13.5	Conclusions	354
14		ervised Actor-Critic Reinforcement Learning chael T. Rosenstein and Andrew G. Barto	359
	14.1	Introduction	359
	14.2	Supervised Actor-Critic Architecture	361
	14.3	Examples	366
	14.4	Conclusions	375

		CO	ONTENTS	ix
15		T and DAC — A Common Framework for Comparison iil V. Prokhorov		381
	15.1	Introduction		381
	15.2	Relationship between BPTT and DAC		383
	15.3	Critic representation		386
	15.4	Hybrid of BPTT and DAC		390
	15.5	Computational complexity and other issues		395
	15.6	Two classes of challenging problems		397
	15.7	Conclusion		401
Pa	rt III	Applications		405
16		-Optimal Control Via Reinforcement Learning gustine O. Esogbue and Warren E. Hearnes II		407
	16.1	Introduction		407
	16.2	Terminal Control Processes		408
	16.3	A Hybridization: The GCS-Δ Controller		410
	16.4	Experimental Investigation of the GCS-Δ Algorithm		422
	16.5	Dynamic Allocation of Controller Resources		425
	16.6	Conclusions and Future Research		427
17		tiobjective Control Problems by Reinforcement Learning ng-Oh Kang and Zeungnam Bien	<u>g</u>	433
	17.1	Introduction		433
	17.2	Preliminary		435
	17.3	Policy Improvement Algorithm with Vector-Valued Rewar	rd	440
	17.4	Multi-Reward Reinforcement Learning for Fuzzy Control		443
	17.5	Summary		453
18	Agil	ptive Critic Based Neural Network for Control-Constrai e Missile N. Balakrishnan and Dongchen Han	ned	463
	18.1	Introduction		463
	18.2	Problem Formulation and Solution Development		465
		Minimum Time Heading Reversal Problem in a Vertical F	lane	469
	18.4	Use of Networks in Real-Time as Feedback Control		472
	18.5	Numerical Results		473
	18.6	Conclusions		476

x CONTENTS

Applications of Approximate Dynamic Programming in Power Systems			
Cont	rol	479	
	nesh K renayagamooriny, Konala G Harley, and Donald C Wunsch		
19.1	Introduction	479	
19.2	Adaptive Critic Designs and Approximate Dynamic Programming	483	
		493	
	•	494	
19.5	Simulation and Hardware Implementation Results	496	
19.6	Summary	510	
Robi	ist Reinforcement Learning for Heating, Ventilation, and		
Air (Conditioning Control of Buildings	517	
Che	artes W. Anderson, Douglas Hittle, Matt Kretchmar, and Peter Young		
20.1	Introduction	517	
20.2	Heating Coil Model and PI Control	521	
20.3	Combined PI and Reinforcement Learning Control	522	
20.4	Robust Control Framework for Combined PI and RL Control	525	
20.5	Conclusions	529	
		535	
21.1	Introduction	535	
21.2	Helicopter Model	538	
21.3	Direct NDP Mechanism Applied to Helicopter Stability Control	540	
21.4	Direct NDP Mechanism Applied to Helicopter Tracking Control	548	
		553	
21.6	Conclusions	556	
		561	
22.1	Grand Overview of the Plan for the Future Optimal Power Flow	561	
22.2	Generalized Formulation of the OPF Problem	567	
22.3	General Optimization Techniques Used in Solving the OPF Problem	571	
22.4	State-of-the-Art Technology in OPF Programs: The Quadratic Interior Point (OIP) Method	575	
22.5		576	
22.6	Conclusion	506	
	Cont. Ga 19.1 19.2 19.3 19.4 19.5 19.6 Robit Air Cont. 20.1 20.2 20.3 20.4 20.5 Helican 21.1 21.2 21.3 21.4 21.5 21.6 Towar 22.1 22.2 22.3 22.4 22.5	Control Ganesh K Venayagamoorthy, Ronald G Harley, and Donald C Wansch 19.1 Introduction 19.2 Adaptive Critic Designs and Approximate Dynamic Programming 19.3 General Training Procedure for Critic and Action Networks 19.4 Power System 19.5 Simulation and Hardware Implementation Results 19.6 Summary Robust Reinforcement Learning for Heating, Ventilation, and Air Conditioning Control of Buildings Charles W. Anderson, Douglas Hittle, Matt Kretchmar, and Peter Young 20.1 Introduction 20.2 Heating Coil Model and PI Control 20.3 Combined PI and Reinforcement Learning Control 20.4 Robust Control Framework for Combined PI and RL Control 20.5 Conclusions Helicopter Flight Control Using Direct Neural Dynamic Programming Russell Enns and Jennie Si 21.1 Introduction 21.2 Helicopter Model 21.3 Direct NDP Mechanism Applied to Helicopter Stability Control 21.4 Direct NDP Mechanism Applied to Helicopter Tracking Control 21.5 Reconfigurable Flight Control 21.6 Conclusions Toward Dynamic Stochastic Optimal Power Flow James A. Momoh 22.1 Grand Overview of the Plan for the Future Optimal Power Flow 22.2 Generalized Formulation of the OPF Problem 23.3 General Optimization Techniques Used in Solving the OPF Problem 24.4 State-of-the-Art Technology in OPF Programs: The Quadratic Inte- rior Point (QIP) Method 25.5 Strategy for Future OPF Development	

23 Control, Optimization, Security, and Self-healing of Benchma	
Power Systems	599
James A. Momoh and Edwin Zivi	

Illustrative Terrestrial Power System Challenge Problems

Illustrative Navy Power System Challenge Problems

Summary of Power System Challenges and Topics

Introduction

23.6 Summary

23.2 Description of the Benchmark Systems

23.1

CONTENTS

хi

599

601

604

614 629

633