CAMBRIDGE TEXTS IN BIOMEDICAL ENGINEERING

An Introduction to Modeling of Transport Processes

Applications to Biomedical Systems

Ashim Datta and Vineet Rakesh

Contents

Preface			xii	
Ac	Acknowledgments			
Int	Introduction and overview			
Lis	st of syn	nbols	XXV	
I	Esse	ntial steps	1	
1	Problem formulation		3	
	1.1	Context: biomedical transport processes	3	
	1.2	What is problem formulation?	15	
	1.3	Steps in problem formulation	5	
	1.4	Defining goals for problem formulation	ç	
	1.5	Simplify, simplify	11	
	1.6	Geometry: setting the computational domain	11	
	1.7	Governing equations	21	
	1.8	Boundary and initial conditions	27	
	1.9	Material properties	32	
	1.10	Other input parameters	35	
	1.11	Summary	35	
	1.12	Problems	37	
2	Softv	vare implementation 1	50	
	2.1	Choosing a software	50	
	2.2	Software is not to be used as a blackbox	51	
	2.3	Organization of a typical CAE software: preprocessing,		
		processing and postprocessing	51	
	2.4	Some general guidelines to preprocessing	54	
	2.5	Introduction to preprocessing in a computational software		
		(COMSOL)	55	
	2.6	Geometry and analysis type	56	
	2.7	Geometry creation	60	

viii

	2.7	Geometry creation	60
	2.8	Governing equations	65
	2.9	Boundary conditions	72
	2.10	Initial conditions	77
	2.11	Material properties	77
	2.12	Miscellaneous implementation aspects	82
	2.13	Problems	85
3	Softv	vare implementation 2	87
	3.1	Which numerical method to use	87
	3.2	Items needed in specifying the solution methodology	88
	3.3	How to discretize the domain: mesh	88
	3.4	How to choose a time step	98
	3.5	How to choose a solver to solve the system of linear equations	103
	3.6	Problems	106
4	Softv	vare implementation 3	108
	4.1	Useful information in a biomedical context	109
	4.2	Obtaining data at a particular location	111
	4.3	Plotting transient data at one or more points,	
		line or surface as a function of time	113
	4.4	Obtaining surface/contour plots (in 2D problems) for	
		observing variation within a region	117
	4.5	Obtaining a surface plot in a 3D problem	121
	4.6	Obtaining average values at a particular time or as a function	
		of time	125
	4.7	Obtaining arbitrary functions of computed variables	129
	4.8	Creating animations	129
	4.9	Dedicated plotting and postprocessing software	131
	4.10	Relating to the goals of the simulation: guidelines for	
		postprocessing	131
	4.11	Analysis of data obtained from postprocessing	133
	4.12	Presenting the simulation results to others	133
	4.13	Problems	134
	4.14	Appendix	136
5	Valid	lation, sensitivity analysis, optimization and	
	debu	gging	139
	5.1	Types of errors and error reduction	140
	5.2	Estimating error: validation of the model	144
	5.3	Reducing discretization error: mesh convergence	146

	5.4	Estimating uncertainty and relating to design: performing		
		sensitivity analysis	151	
	5.5	Objective functions: simple optimization	155	
	5.6	When things don't work: debugging	157	
	5.7	Problems	161	
11	Cas	e studies	177	
6	Case studies		179	
	6.1	Introduction	179	
	6.2	How to use the case studies	182	
	6.3	Additional case studies from the work of students at Cornell		
		University	183	
	Case	Study I: Thermal ablation of hepatic tumors	186	
	Case	Study II: Cryosurgery of a wart	201	
	Case	Study III: Drug delivery from a patch	221	
	Case	Study IV: Drug delivery in therapeutic contact lenses	243	
	Case Study V: Elimination of nitrogen from the blood stream during			
		deep sea diving	251	
	Case	Study VI: Flow in human carotid artery bifurcation	258	
	Case	Study VII: Radioimmunotherapy of metastatic melanoma	270	
	Case	Study VIII: Burn injury in blood-perfused skin	280	
	Case	Study IX: Radiofrequency cardiac ablation	288	
	Case	Study X: Laser irradiation of human breast tumor	303	
	6.4	Problems	321	
Ш	Ва	ckground theory	333	
7	Gov	erning equations and boundary conditions	335	
	7.1	Conservation of mass: the continuity equation	336	
	7.2	Conservation of momentum: governing equation for fluid flow	338	
	7.3	Conservation of thermal energy: governing equation for heat		
		transfer	342	
	7.4	Governing equation for heat conduction with change of phase	346	
	7.5	The bioheat transfer equation for mammalian tissue	349	
	7.6	Conservation of a mass species: governing equation for mass		
		transfer	353	
	7.7	Non-dimensionalization of the governing equations	357	
	7.8	Coupling of governing equations	360	
	7.9	Summary: governing equations	362	

	7.10	Boundary conditions: general comments	362
	7.11	Boundary conditions: fluid mechanics	362
	7.12	Boundary conditions for heat transfer	364
	7.13	Boundary conditions for mass transfer	367
	7.14	Governing equations in various coordinate systems	373
	7.15	Problems	378
8	Source terms		
	8.1	Heat source terms due to metabolism and blood flow	380
	8.2	A generic form for the heat source term	380
	8.3	Heat source term for electromagnetic heating	382
	8.4	Microwave heating and its heat source term	384
	8.5	Radiofrequency heating and its heat source term	389
	8.6	Ferromagnetic heating and its heat source term	392
	8.7	Infrared heating and its heat source term	393
	8.8	Laser heating and its heat source term	395
	8.9	Ultrasonic heating	401
	8.10	Mass source terms	405
	8.11	Summary	408
	8.12	Problems	411
9	Material properties and other input parameters 4		
	9.1	What material property data and input parameters do we need?	414
	9.2	Where do we get data?	415
	9.3	How accurate should the data be?	416
	9.4	What to do when accurate data is not available	416
	9.5	Anatomical and physiological parameters	417
	9.6	Rheological properties	424
	9.7	Thermal conductivity	427
	9.8	Specific heat	429
	9.9	Density	433
	9.10	Thermal diffusivity	433
	9.11	Thermal properties of related materials	434
	9.12	Latent heat of fusion and evaporation	434
	9.13	Radiative properties	434
	9.14	Equilibrium vapor pressure	435
	9.15	Properties of an air—water vapor mixture	436
	9.16	Mass diffusivity	436
	9.17	Partition coefficient	439
	9.18	Diffusive permeability and transmissibility	439
	0.10	Reaction rate constants	113

	9.20	Other parameters	444
	9.21	Summary	450
	9.22	Problems (short questions)	453
10	Solvii	ng the equations: numerical methods	455
	10.1	Flexibility of numerical methods	456
	10.2	Finite difference method (FDM)	458
	10.3	FDM: converting the 1D heat equation to algebraic equations	460
	10.4	FDM: stability (limitations in choosing step sizes)	464
	10.5	FDM: summary	464
	10.6	Finite element method (FEM)	465
	10.7	FEM: converting the 1D heat equation to algebraic equations	465
	10.8	FEM: solving the linear system of algebraic equations	478
	10.9	FEM: choice between linear solvers	483
	10.10	FEM: linearization of non-linear equations	483
	10.11	FEM: error in the finite element method and its reduction	485
	10.12	FEM: convergence of the numerical solution as the mesh is	
		refined	487
	10.13	FEM: stability of the numerical solution	488
	10.14	FEM: generalization of methodology to more complex	
		situations	488
	10.15	FEM: summary	490
	10.16	Problems	491
Ind	'ex		497