$$(\mathbf{x})^{*} \frac{\partial x_{i}}{\partial x_{k}} + \sum_{j=1}^{n} u_{j}^{*} \frac{\partial y_{j}}{\partial x_{k}} = 0$$ $$\Phi_{k+1,j} \leq \Phi_{k} - t_{j}\beta_{k}$$ $$(\mathbf{x}), r) = f(\mathbf{x}) + \sum_{i=1}^{p} \left[v_{i}h_{i}(\mathbf{x}) + \frac{1}{2}rh_{i}^{2}(\mathbf{x}) \right]$$ **INTRODUCTION TO** ## OPTIMUM DESIGN THIRD EDITION ## Contents | Preface to Third Edition xiii | 2.4 Sawmill Operation 28 | |---|--| | Acknowledgments xv | 2.5 Design of a Two-Bar Bracket 30 | | Key Symbols and Abbreviations xvi | 2.6 Design of a Cabinet 37 | | Rey Symbols and Mobieviations XVI | 2.6.1 Formulation 1 for Cabinet Design 37 | | | 2.6.2 Formulation 2 for Cabinet Design 38 | | I | 2.6.3 Formulation 3 for Cabinet Design 39 | | | 2.7 Minimum-Weight Tubular Column Design 40 | | THE BASIC CONCEPTS | 2.7.1 Formulation 1 for Column Design 41 | | | 2.7.2 Formulation 2 for Column Design 41 | | 1 Introduction to Design Optimization 1 | 2.8 Minimum-Cost Cylindrical Tank Design 42 | | 1 mitoduction to Design Optimization 1 | 2.9 Design of Coil Springs 43 | | 1.1 The Design Process 2 | 2.10 Minimum-Weight Design of a Symmetric | | 1.2 Engineering Design versus Engineering | Three-Bar Truss 46 | | Analysis 4 | 2.11 A General Mathematical Model for Optimum | | 1.3 Conventional versus Optimum Design | Design 50 | | Process 4 | 2.11.1 Standard Design Optimization
Model 50 | | 1.4 Optimum Design versus Optimal Control 6 | 2.11.2 Maximization Problem Treatment 51 | | 1.5 Basic Terminology and Notation 6 | 2.11.2 Maximization Problem Treatment 31 2.11.3 Treatment of "Greater Than Type" | | 1.5.1 Points and Sets 6 | Constraints 51 | | 1.5.2 Notation for Constraints 8 | 2.11.4 Application to Different Engineering | | 1.5.3 Superscripts/Subscripts and Summation | Fields 52 | | Notation 9 | 2.11.5 Important Observations about the | | 1.5.4 Norm/Length of a Vector 10 | Standard Model 52 | | 1.5.5 Functions 11 | 2.11.6 Feasible Set 53 | | 1.5.6 Derivatives of Functions 12
1.5.7 U.S.—British versus SI Units 13 | 2.11.7 Active/Inactive/Violated | | 1.5.7 U.S.—British versus 31 Units 15 | Constraints 53 | | 2.0 | 2.11.8 Discrete and Integer Design | | 2 Optimum Design Problem | Variables 54 | | Formulation 17 | 2.11.9 Types of Optimization Problems 55 | | | Exercises for Chapter 2 56 | | 2.1 The Problem Formulation Process 18 | | | 2.1.1 Step 1: Project/Problem Description 18 | 2 Craphical Optimization and Paris | | 2.1.2 Step 2: Data and Information | 3 Graphical Optimization and Basic | | Collection 19 | Concepts 65 | | 2.1.3 Step 3: Definition of Design Variables 20 2.1.4 Step 4: Optimization Criterion 21 | 2.1 Combined Colorina Dances 65 | | 2.1.4 Step 4: Optimization Criterion 21 2.1.5 Step 5: Formulation of Constraints 22 | 3.1 Graphical Solution Process 65 | | 2.2 Design of a Can 25 | 3.1.1 Profit Maximization Problem 65 | | 2.3 Insulated Spherical Tank Design 26 | 3.1.2 Step-by-Step Graphical Solution Procedure 67 | | 2.5 moduced opticion rank Design 20 | riocedure or . | | 3.2 Use of Mathematica for Graphical Optimization 71 3.2.1 Plotting Functions 72 3.2.2 Identification and Shading of Infeasible Region for an Inequality 73 3.2.3 Identification of Feasible Region 73 3.2.4 Plotting of Objective Function Contours 74 | 4.5.2 Lagrange Multiplier Theorem 135 4.6 Necessary Conditions for a General Constrained
Problem 137 4.6.1 The Role of Inequalities 137 4.6.2 Karush-Kuhn-Tucker Necessary
Conditions 139 4.6.3 Summary of the KKT Solution
Approach 152 | |---|--| | 3.2.5 Identification of Optimum Solution 743.3 Use of MATLAB for Graphical Optimization 3.3.1 Plotting of Function Contours 75 | 1 , , , | | 3.3.2 Editing of Graph 77 | Limits 153
4.7.2 Effect of Cost Function Scaling on the | | 3.4 Design Problem with Multiple Solutions 77 3.5 Problem with Unbounded Solution 79 | Lagrange Multipliers 156 | | 3.6 Infeasible Problem 79 | 4.7.3 Effect of Scaling a Constraint on Its | | 3.7 Graphical Solution for the Minimum-Weight | Lagrange Multiplier 158 | | Tubular Column 80 | 4.7.4 Generalization of Constraint Variation | | 3.8 Graphical Solution for a Beam Design | Sensitivity Result 159 | | Problem 82 | 4.8 Global Optimality 159 | | Exercises for Chapter 3 83 | 4.8.1 Convex Sets 160 | | 4 Optimum Design Concepts: Optimali
Conditions 95 | 4.8.4 Transformation of a Constraint 168 4.8.5 Sufficient Conditions for Convex | | 4.1 Definitions of Global and Local Minima 964.1.1 Minimum 974.1.2 Existence of a Minimum 102 | Programming Problems 169 4.9 Engineering Design Examples 171 4.9.1 Design of a Wall Bracket 171 | | 4.1.2 Existence of a Minimum 102 4.2 Review of Some Basic Calculus Concepts 10 | 4.9.2 Design of a Rectangular | | 4.2.1 Gradient Vector: Partial Derivatives | Beam 174 | | of a Function 103 | Exercises for Chapter 4 178 | | 4.2.2 Hessian Matrix: Second-Order Partial | | | Derivatives 105 | | | 4.2.3 Taylor's Expansion 106 | 5 More on Optimum Design Concepts: | | 4.2.4 Quadratic Forms and Definite Matrices 109 | Optimality Conditions 189 | | 4.3 Concept of Necessary and Sufficient | 5.1 Alternate Form of KKT Necessary | | Conditions 115 | Conditions 189 | | 4.4 Optimality Conditions: Unconstrained | 5.2 Irregular Points 192 | | Problem 116 | 5.3 Second-Order Conditions for Constrained | | 4.4.1 Concepts Related to Optimality | Optimization 194 | | Conditions 116 | 5.4 Second-Order Conditions for Rectangular | | 4.4.2 Optimality Conditions for Functions | Beam Design Problem 199 | | of a Single Variable 117 | 5.5 Duality in Nonlinear Programming 201 | | 4.4.3 Optimality Conditions for Functions | 5.5.1 Local Duality: Equality Constraints | | of Several Variables 122 | Case 201 | 4.5 Necessary Conditions: Equality-Constrained 4.5.1 Lagrange Multipliers 131 Problem 130 Case 206 Exercises for Chapter 5 208 5.5.2 Local Duality: The Inequality Constraints CONTENTS | | *** | |--|--| | NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION 6 Optimum Design with Excel Solver 213 | 7.2 Unconstrained Optimum Design Problems 278 7.3 Constrained Optimum Design Problems 281 7.4 Optimum Design Examples with MATLAB 284 7.4.1 Location of Maximum Shear Stress for Two Spherical Bodies in Contact 284 7.4.2 Column Design for Minimum Mass 286 7.4.3 Flywheel Design for Minimum Mass 290 Exercises for Chapter 7 294 | | 6.1 Introduction to Numerical Methods for Optimum Design 213 6.1.1 Classification of Search Methods 214 6.1.2 What to Do If the Solution Process | 8 Linear Programming Methods
for Optimum Design 299
8.1 Linear Functions 300 | | Fails 215 6.1.3 Simple Scaling of Variables 217 6.2 Excel Solver: An Introduction 218 6.2.1 Excel Solver 218 6.2.2 Roots of a Nonlinear Equation 219 6.2.3 Roots of a Set of Nonlinear | 8.2 Definition of a Standard Linear Programming
Problem 300 8.2.1 Standard LP Definition 300 8.2.2 Transcription to Standard LP 302 8.3 Basic Concepts Related to Linear Programming
Problems 305 | | Equations 222 6.3 Excel Solver for Unconstrained Optimization Problems 224 6.4 Excel Solver for Linear Programming | 8.3.1 Basic Concepts 305 8.3.2 LP Terminology 310 8.3.3 Optimum Solution to LP Problems 313 8.4 Calculation of Basic Solutions 314 8.4.1 The Tableau 314 | | Problems 225 6.5 Excel Solver for Nonlinear Programming: Optimum Design of Springs 227 6.6 Optimum Design of Plate Girders Using Excel | 8.4.2 The Pivot Step 316 8.4.3 Basic Solutions to Ax = b 317 8.5 The Simplex Method 321 | | Solver 231 6.7 Optimum Design of Tension Members 238 6.8 Optimum Design of Compression Members 243 6.8.1 Formulation of the Problem 243 6.8.2 Formulation of the Problem for Inelastic | 8.5.1 The Simplex 321 8.5.2 Basic Steps in the Simplex Method 321 8.5.3 Basic Theorems of Linear Programming 326 | | Buckling 247 6.8.3 Formulation of the Problem for Elastic Buckling 249 6.9 Optimum Design of Members for Flexure 250 | 8.6 The Two-Phase Simplex Method—Artificial Variables 334 8.6.1 Artificial Variables 334 8.6.2 Artificial Cost Function 336 | | 6.10 Optimum Design of Telecommunication Poles 263 Exercises for Chapter 6 271 | 8.6.3 Definition of the Phase I Problem 336 8.6.4 Phase I Algorithm 337 8.6.5 Phase II Algorithm 339 8.6.6 Degenerate Basic Feasible Solution 345 | | 7 Optimum Design with MATLAB 275 | 8.7 Postoptimality Analysis 348 8.7.1 Changes in Constraint Limits 348 8.7.2 Ranging Right-Side Parameters 354 | | 7.1 Introduction to the Optimization Toolbox 275 7.1.1 Variables and Expressions 275 | 8.7.3 Ranging Cost Coefficients 3598.7.4 Changes in the Coefficient | Matrix 361 Exercises for Chapter 8 363 7.1.2 Scalar, Array, and Matrix Operations 276 7.1.3 Optimization Toolbox 276 Algorithms 415 Step 415 10.3.1 Descent Direction and Descent | 9 More on Linear Programming Methods | 10.3.2 Convergence of Algorithms 417 | |---|---| | for Optimum Design 377 | 10.3.3 Rate of Convergence 417 | | ior optimality beorgii 577 | 10.4 Step Size Determination: Basic Ideas 418 | | 9.1 Derivation of the Simplex Method 377 | 10.4.1 Definition of the Step Size | | 9.1.1 General Solution to $Ax = b$ 377 | Determination Subproblem 418 | | 9.1.2 Selection of a Nonbasic Variable that | 10.4.2 Analytical Method to Compute Step | | Should Become Basic 379 | Size 419 | | 9.1.3 Selection of a Basic Variable that Should | 10.5 Numerical Methods to Compute Step Size 421 | | Become Nonbasic 381 | 10.5.1 General Concepts 421 | | 9.1.4 Artificial Cost Function 382 | 10.5.2 Equal-Interval Search 423 | | 9.1.5 The Pivot Step 384 | 10.5.3 Alternate Equal-Interval Search 425 | | 9.1.6 Simplex Algorithm 384 | 10.5.4 Golden Section Search 425 | | | 10.6 Search Direction Determination: The | | | Steepest-Descent Method 431 | | 9.3 Duality in Linear Programming 387 | 10.7 Search Direction Determination: The | | 9.3.1 Standard Primal LP Problem 387 | | | 9.3.2 Dual LP Problem 388 | Conjugate Gradient Method 434 | | 9.3.3 Treatment of Equality Constraints 389 | 10.8 Other Conjugate Gradient Methods 437 | | 9.3.4 Alternate Treatment of Equality | Exercises for Chapter 10 438 | | Constraints 391 | | | 9.3.5 Determination of the Primal Solution | 11 More on Numerical Methods for | | from the Dual Solution 392 | Unconstrained Optimum Design 443 | | 9.3.6 Use of the Dual Tableau to Recover | Shoomeranea Spiniani Beoign 149 | | the Primal Solution 395 | 11.1 More on Step Size Determination 444 | | 9.3.7 Dual Variables as Lagrange | 11.1.1 Polynomial Interpolation 444 | | Multipliers 398 | 11.1.2 Inexact Line Search: Armijo's | | 9.4 KKT Conditions for the LP Problem 400 | Rule 448 | | 9.4.1 KKT Optimality Conditions 400 | 11.1.3 Inexact Line Search: Wolfe | | 9.4.2 Solution to the KKT Conditions 400 | Conditions 449 | | 9.5 Quadratic Programming Problems 402 | 11.1.4 Inexact Line Search: Goldstein Test 450 | | 9.5.1 Definition of a QP Problem 402 | 11.2 More on the Steepest-Descent Method 451 | | 9.5.2 KKT Necessary Conditions for the QP | 11.2.1 Properties of the Gradient Vector 451 | | Problem 403 | 11.2.2 Orthogonality of Steepest-Descent | | 9.5.3 Transformation of KKT Conditions 404 | Directions 454 | | 9.5.4 The Simplex Method for Solving QP | 11.3 Scaling of Design Variables 456 | | Problem 405 | 11.4 Search Direction Determination: Newton's | | Exercises for Chapter 9 409 | Method 459 | | - | | | 10 Numerical Methods for Unconstrained | | | | 11.4.2 Modified Newton's Method 461 | | Optimum Design 411 | 11.4.3 Marquardt Modification 465 | | 10.1 0 1 | 11.5 Search Direction Determination: Quasi-Newton | | 10.1 Gradient-Based and Direct Search | Methods 466 | | Methods 411 | 11.5.1 Inverse Hessian Updating: The DFP | | 10.2 General Concepts: Gradient-Based | Method 467 | | Methods 412 | 11.5.2 Direct Hessian Updating: The BFGS | | 10.2.1 General Concepts 413 | Method 470 | | 10.2.2 A General Iterative Algorithm 413 | 11.6 Engineering Applications of Unconstrained | | 10.3 Descent Direction and Convergence of | Methods 472 | 11.6.1 Data Interpolation 472 Energy 473 11.6.2 Minimization of Total Potential 14.1.1 General Guidelines 576 14.1.2 Example of a Practical Design Optimization Problem 577 | | 11.6.3 Solutions of Nonlinear Equations 475 | 12.7.2 The CSD Algorithm: Some | |-------|--|--| | | Solutions to Constrained Problems Using | Observations 527 | | | Unconstrained Optimization Methods 477 | Exercises for Chapter 12 527 | | | 11.7.1 Sequential Unconstrained Minimization | • | | | Techniques 478 | | | | 11.7.2 Augmented Lagrangian (Multiplier) | 13 More on Numerical Methods | | | Methods 479 | for Constrained Optimum | | 11.8 | Rate of Convergence of Algorithms 481 | Design 533 | | | 11.8.1 Definitions 481 | Design 999 | | | 11.8.2 Steepest-Descent Method 482 | 13.1 Potential Constraint Strategy 534 | | | 11.8.3 Newton's Method 483 | 13.2 Inexact Step Size Calculation 537 | | | 11.8.4 Conjugate Gradient Method 484 | 13.2.1 Basic Concept 537 | | | 11.8.5 Quasi-Newton Methods 484 | 13.2.2 Descent Condition 538 | | | Direct Search Methods 485 | 13.2.3 CSD Algorithm with Inexact Step | | | 11.9.1 Univariate Search 485 | Size 542 | | | 11.9.2 Hooke-Jeeves Method 486 | 13.3 Bound-Constrained Optimization 549 | | Exerc | cises for Chapter 11 487 | | | | 1 | 13.3.1 Optimality Conditions 549 13.3.2 Projection Methods 550 | | | | | | | | 13.3.3 Step Size Calculation 552 | | 12 | Numerical Methods for Constrained | 13.4 Sequential Quadratic Programming: SQP | | - | Optimum Design 491 | Methods 553 | | | o pominima a sought 19 1 | 13.4.1 Derivation of the Quadratic | | 12.1 | Basic Concepts Related to Numerical | Programming Subproblem 554 | | | Methods 492 | 13.4.2 Quasi-Newton Hessian | | | 12.1.1 Basic Concepts Related to Algorithms | Approximation 557 | | | for Constrained Problems 492 | 13.4.3 SQP Algorithm 558 | | | 12.1.2 Constraint Status at a Design | 13.4.4 Observations on SQP Methods 561 | | | Point 495 | 13.4.5 Descent Functions 563 | | | 12.1.3 Constraint Normalization 496 | 13.5 Other Numerical Optimization Methods 564 | | | 12.1.4 The Descent Function 498 | 13.5.1 Method of Feasible Directions 564 | | | 12.1.5 Convergence of an Algorithm 498 | 13.5.2 Gradient Projection Method 566 | | 12 2 | Linearization of the Constrained Problem 499 | 13.5.3 Generalized Reduced Gradient | | | The Sequential Linear Programming | Method 567 | | 12.5 | Algorithm 506 | 13.6 Solution to the Quadratic Programming | | | 12.3.1 Move Limits in SLP 506 | Subproblem 569 | | | 12.3.2 An SLP Algorithm 508 | 13.6.1 Solving the KKT Necessary | | | _ | Conditions 570 | | | 12.3.3 The SLP Algorithm: Some | 13.6.2 Direct Solution to the QP | | 12.4 | Observations 512 | Subproblem 571 | | | Sequential Quadratic Programming 513 | Exercises for Chapter 13 572 | | 12.5 | Search Direction Calculation: The QP | | | | Subproblem 514 | | | | 12.5.1 Definition of the QP Subproblem 514 | 1.4. D.,, | | | 12.5.2 Solving of the QP Subproblem 518 | 14 Practical Applications | | 12.6 | The Step Size Calculation Subproblem 520 | of Optimization 575 | | | 12.6.1 The Descent Function 520 | | | | 12.6.2 Step Size Calculation: Line | 14.1 Formulation of Practical Design Optimization | | | Search 522 | Problems 576 | 12.7 The Constrained Steepest-Descent 12.7.1 The CSD Algorithm 526 Method 525 X CONTENTS 15.1.2 Classification of Mixed Variable Optimum Design Problems 621 | 14.2 Gradient Evaluation of Implicit Functions 582 | 15.1.3 Overview of Solution Concepts 622 | |--|---| | 14.3 Issues in Practical Design Optimization 587 | 15.2 Branch-and-Bound Methods 623 | | 14.3.1 Selection of an Algorithm 587 | 15.2.1 Basic BBM 623 | | 14.3.2 Attributes of a Good Optimization | 15.2.2 BBM with Local Minimization 625 | | Algorithm 588 | 15.2.3 BBM for General MV-OPT 627 | | 14.4 Use of General-Purpose Software 589 | 15.3 Integer Programming 628 | | 14.4.1 Software Selection 589 | 15.4 Sequential Linearization Methods 629 | | 14.4.2 Integration of an Application into | 15.5 Simulated Annealing 630 | | General-Purpose Software 589 | 15.6 Dynamic Rounding-Off Method 632 | | 14.5 Optimum Design of Two-Member Frame with | 15.7 Neighborhood Search Method 633 | | Out-of-Plane Loads 590 | 15.8 Methods for Linked Discrete Variables 633 | | 14.6 Optimum Design of a Three-Bar Structure for | 15.9 Selection of a Method 635 | | Multiple Performance Requirements 592 | 15.10 Adaptive Numerical Method for Discrete | | 14.6.1 Symmetric Three-Bar Structure 592 | Variable Optimization 636 | | 14.6.2 Asymmetric Three-Bar Structure 594 | 15.10.1 Continuous Variable | | 14.6.3 Comparison of Solutions 598 | Optimization 636 | | 14.7 Optimal Control of Systems by Nonlinear | 15.10.2 Discrete Variable Optimization 637 | | Programming 598 | Exercises for Chapter 15 639 | | 14.7.1 A Prototype Optimal Control | | | Problem 598 | 16 Genetic Algorithms for Optimum | | 14.7.2 Minimization of Error in State | _ ^ | | Variable 602 | Design 643 | | 14.7.3 Minimum Control Effort Problem 608 | 16.1 Basic Concepts and Definitions 644 | | 14.7.4 Minimum Time Control Problem 609 | 16.2 Fundamentals of Genetic Algorithms 646 | | 14.7.5 Comparison of Three Formulations | 16.3 Genetic Algorithm for Sequencing-Type | | for the Optimal Control of System | Problems 651 | | Motion 611 | 16.4 Applications 653 | | 14.8 Alternative Formulations for Structural | Exercises for Chapter 16 653 | | Optimization Problems 612 | Exercises for Chapter 10 055 | | 14.9 Alternative Formulations for Time-Dependent | 45.37.15.15.15.00.50.50.50.50.50.50.50.50.50.50.50.50 | | Problems 613 | 17 Multi-objective Optimum Design | | Exercises for Chapter 14 615 | Concepts and Methods 657 | | | • | | YYT | 17.1 Problem Definition 658 | | \mathbf{III} | 17.2 Terminology and Basic Concepts 660 | | ADVANCED AND MODERN | 17.2.1 Criterion Space and Design Space 660 | | | 17.2.2 Solution Concepts 662 | | TOPICS ON OPTIMUM | 17.2.3 Preferences and Utility Functions 665 | | DESIGN | 17.2.4 Vector Methods and Scalarization | | | Methods 666 | | 15 Discrete Variable Optimum Design | 17.2.5 Generation of Pareto Optimal Set 666 | | • | 17.2.6 Normalization of Objective | | Concepts and Methods 619 | Functions 667 | | 15.1 Paris Comments and Dec. 191-19. 620 | 17.2.7 Optimization Engine 667 | | 15.1 Basic Concepts and Definitions 620 | 17.3 Multi-objective Genetic Algorithms 667 | | 15.1.1 Definition of Mixed Variable Optimum | 17.4 Weighted Sum Method 671 | | Design Problem: MV-OPT 620 | 17.5 Weighted Min-Max Method 672 | 17.6 Weighted Global Criterion Method 673 17.7 Lexicographic Method 674 CONTENTS xi | 17.8 Bounded Objective Function Method 675
17.9 Goal Programming 676
17.10 Selection of Methods 677
Exercises for Chapter 17 678 | 19.1.3 Crossover Operation to Generate the Trial Design 716 19.1.4 Acceptance/Rejection of the Trial Design 717 10.1.5 PEAN TRANSPORT | |--|---| | 18 Global Optimization Concepts
and Methods 681 | 19.1.5 DE Algorithm 717 19.2 Ant Colony Optimization 718 19.2.1 Ant Behavior 718 19.2.2 ACO Algorithm for the Traveling Salesman Problem 721 | | 18.1 Basic Concepts of Solution Methods 682 18.1.1 Basic Solution Concepts 682 | 19.2.3 ACO Algorithm for Design
Optimization 724 | | 18.1.2 Overview of Methods 683 18.2 Overview of Deterministic Methods 684 18.2.1 Covering Methods 684 18.2.2 Zooming Method 685 | 19.3 Particle Swarm Optimization 727 19.3.1 Swarm Behavior and Terminology 727 19.3.2 Particle Swarm Optimization Algorithm 728 | | 18.2.3 Methods of Generalized Descent 686
18.2.4 Tunneling Method 688 | Exercises for Chapter 19 729 | | 18.3 Overview of Stochastic Methods 689
18.3.1 Pure Random Search Method 690
18.3.2 Multistart Method 691
18.3.3 Clustering Methods 691 | 20 Additional Topics on Optimum
Design 731 | | 18.3.4 Controlled Random Search: Nelder-Mead Method 69418.3.5 Acceptance-Rejection Methods 697 | 20.1 Meta-Models for Design Optimization 731 20.1.1 Meta-Model 731 20.1.2 Response Surface Method 733 | | 18.3.6 Stochastic Integration 698 18.4 Two Local-Global Stochastic Methods 699 18.4.1 Conceptual Local-Global | 20.1.3 Normalization of Variables 737 20.2 Design of Experiments for Response Surface Generation 741 | | Algorithm 699 18.4.2 Domain Elimination Method 700 18.4.3 Stochastic Zooming Method 702 18.4.4 Operations Analysis of Methods 702 | 20.3 Discrete Design with Orthogonal Arrays 749 20.4 Robust Design Approach 754 20.4.1 Robust Optimization 754 20.4.2 The Taguchi Method 761 | | 18.5 Numerical Performance of Methods 705 18.5.1 Summary of Features of Methods 705 18.5.2 Performance of Some Methods with
Unconstrained Problems 706 | 20.5 Reliability-Based Design Optimization—Design under Uncertainty 767 20.5.1 Review of Background Material for RBDO 768 | | 18.5.3 Performance of Stochastic Zooming and Domain Elimination Methods 707 18.5.4 Global Optimization of Structural Design Problems 708 | 20.5.2 Calculation of the Reliability Index 774 20.5.3 Formulation of Reliability-Based Design Optimization 784 | | Exercises for Chapter 18 710 | | | 19 Nature-Inspired Search Methods 713 | Appendix A: Vector and Matrix
Algebra 785 | | 19.1 Differential Evolution Algorithm 714 19.1.1 Generation of an Initial Population 715 19.1.2 Generation of a Donor Design 716 | A.1 Definition of Matrices 785 A.2 Types of Matrices and Their Operations 787 A.2.1 Null Matrix 787 A.2.2 Vector 787 A.2.3 Addition of Matrices 787 | xii CONTENTS | | A.2.4 Multiplication of Matrices 788 | A.5.1 Linear Independence of a Set of | |------|---|--| | | A.2.5 Transpose of a Matrix 790 | Vectors 810 | | | A.2.6 Elementary Row-Column | A.5.2 Vector Spaces 814 | | | Operations 790 | A.6 Eigenvalues and Eigenvectors 816 | | | A.2.7 Equivalence of Matrices 790 | A.7 Norm and Condition Number of a Matrix 81 | | | A.2.8 Scalar Product—Dot Product of | A.7.1 Norm of Vectors and Matrices 818 | | | Vectors 790 | A.7.2 Condition Number of a Matrix 819 | | | A.2.9 Square Matrices 791 | Exercises for Appendix A 819 | | | A.2.10 Partitioning of Matrices 791 | - Freedom 101 - Freedom 101 | | A 3 | Solving n Linear Equations in n | | | 1110 | Unknowns 792 | Appendix B: Sample Computer | | | A.3.1 Linear Systems 792 | | | | A.3.2 Determinants 793 | Programs 823 | | | A.3.3 Gaussian Elimination Procedure 796 | B.1 Equal Interval Search 823 | | | A.3.4 Inverse of a Matrix: Gauss-Jordan | B.2 Golden Section Search 826 | | | Elimination 800 | | | | | B.3 Steepest-Descent Method 829 | | A.4 | Solution to m Linear Equations in n | B.4 Modified Newton's Method 829 | | | Unknowns 803 | | | | A.4.1 Rank of a Matrix 803 | Bibliography 841 | | | A.4.2 General Solution of $m \times n$ Linear | Answers to Selected Exercises 851 | | | Equations 804 | Allowers to delected Exercises (191 | | A.5 | Concepts Related to a Set of Vectors 810 | Index 861 | | | | |