$$(\mathbf{x})^{*} \frac{\partial x_{i}}{\partial x_{k}} + \sum_{j=1}^{n} u_{j}^{*} \frac{\partial y_{j}}{\partial x_{k}} = 0$$

$$\Phi_{k+1,j} \leq \Phi_{k} - t_{j}\beta_{k}$$

$$(\mathbf{x}), r) = f(\mathbf{x}) + \sum_{i=1}^{p} \left[v_{i}h_{i}(\mathbf{x}) + \frac{1}{2}rh_{i}^{2}(\mathbf{x}) \right]$$

INTRODUCTION TO

OPTIMUM DESIGN

THIRD EDITION

Contents

Preface to Third Edition xiii	2.4 Sawmill Operation 28
Acknowledgments xv	2.5 Design of a Two-Bar Bracket 30
Key Symbols and Abbreviations xvi	2.6 Design of a Cabinet 37
Rey Symbols and Mobieviations XVI	2.6.1 Formulation 1 for Cabinet Design 37
	2.6.2 Formulation 2 for Cabinet Design 38
I	2.6.3 Formulation 3 for Cabinet Design 39
	2.7 Minimum-Weight Tubular Column Design 40
THE BASIC CONCEPTS	2.7.1 Formulation 1 for Column Design 41
	2.7.2 Formulation 2 for Column Design 41
1 Introduction to Design Optimization 1	2.8 Minimum-Cost Cylindrical Tank Design 42
1 mitoduction to Design Optimization 1	2.9 Design of Coil Springs 43
1.1 The Design Process 2	2.10 Minimum-Weight Design of a Symmetric
1.2 Engineering Design versus Engineering	Three-Bar Truss 46
Analysis 4	2.11 A General Mathematical Model for Optimum
1.3 Conventional versus Optimum Design	Design 50
Process 4	2.11.1 Standard Design Optimization Model 50
1.4 Optimum Design versus Optimal Control 6	2.11.2 Maximization Problem Treatment 51
1.5 Basic Terminology and Notation 6	2.11.2 Maximization Problem Treatment 31 2.11.3 Treatment of "Greater Than Type"
1.5.1 Points and Sets 6	Constraints 51
1.5.2 Notation for Constraints 8	2.11.4 Application to Different Engineering
1.5.3 Superscripts/Subscripts and Summation	Fields 52
Notation 9	2.11.5 Important Observations about the
1.5.4 Norm/Length of a Vector 10	Standard Model 52
1.5.5 Functions 11	2.11.6 Feasible Set 53
1.5.6 Derivatives of Functions 12 1.5.7 U.S.—British versus SI Units 13	2.11.7 Active/Inactive/Violated
1.5.7 U.S.—British versus 31 Units 15	Constraints 53
2.0	2.11.8 Discrete and Integer Design
2 Optimum Design Problem	Variables 54
Formulation 17	2.11.9 Types of Optimization Problems 55
	Exercises for Chapter 2 56
2.1 The Problem Formulation Process 18	
2.1.1 Step 1: Project/Problem Description 18	2 Craphical Optimization and Paris
2.1.2 Step 2: Data and Information	3 Graphical Optimization and Basic
Collection 19	Concepts 65
2.1.3 Step 3: Definition of Design Variables 20 2.1.4 Step 4: Optimization Criterion 21	2.1 Combined Colorina Dances 65
2.1.4 Step 4: Optimization Criterion 21 2.1.5 Step 5: Formulation of Constraints 22	3.1 Graphical Solution Process 65
2.2 Design of a Can 25	3.1.1 Profit Maximization Problem 65
2.3 Insulated Spherical Tank Design 26	3.1.2 Step-by-Step Graphical Solution Procedure 67
2.5 moduced opticion rank Design 20	riocedure or .

 3.2 Use of Mathematica for Graphical Optimization 71 3.2.1 Plotting Functions 72 3.2.2 Identification and Shading of Infeasible Region for an Inequality 73 3.2.3 Identification of Feasible Region 73 3.2.4 Plotting of Objective Function Contours 74 	 4.5.2 Lagrange Multiplier Theorem 135 4.6 Necessary Conditions for a General Constrained Problem 137 4.6.1 The Role of Inequalities 137 4.6.2 Karush-Kuhn-Tucker Necessary Conditions 139 4.6.3 Summary of the KKT Solution Approach 152
3.2.5 Identification of Optimum Solution 743.3 Use of MATLAB for Graphical Optimization 3.3.1 Plotting of Function Contours 75	1 , , ,
3.3.2 Editing of Graph 77	Limits 153 4.7.2 Effect of Cost Function Scaling on the
3.4 Design Problem with Multiple Solutions 77 3.5 Problem with Unbounded Solution 79	Lagrange Multipliers 156
3.6 Infeasible Problem 79	4.7.3 Effect of Scaling a Constraint on Its
3.7 Graphical Solution for the Minimum-Weight	Lagrange Multiplier 158
Tubular Column 80	4.7.4 Generalization of Constraint Variation
3.8 Graphical Solution for a Beam Design	Sensitivity Result 159
Problem 82	4.8 Global Optimality 159
Exercises for Chapter 3 83	4.8.1 Convex Sets 160
4 Optimum Design Concepts: Optimali Conditions 95	4.8.4 Transformation of a Constraint 168 4.8.5 Sufficient Conditions for Convex
4.1 Definitions of Global and Local Minima 964.1.1 Minimum 974.1.2 Existence of a Minimum 102	Programming Problems 169 4.9 Engineering Design Examples 171 4.9.1 Design of a Wall Bracket 171
4.1.2 Existence of a Minimum 102 4.2 Review of Some Basic Calculus Concepts 10	4.9.2 Design of a Rectangular
4.2.1 Gradient Vector: Partial Derivatives	Beam 174
of a Function 103	Exercises for Chapter 4 178
4.2.2 Hessian Matrix: Second-Order Partial	
Derivatives 105	
4.2.3 Taylor's Expansion 106	5 More on Optimum Design Concepts:
4.2.4 Quadratic Forms and Definite Matrices 109	Optimality Conditions 189
4.3 Concept of Necessary and Sufficient	5.1 Alternate Form of KKT Necessary
Conditions 115	Conditions 189
4.4 Optimality Conditions: Unconstrained	5.2 Irregular Points 192
Problem 116	5.3 Second-Order Conditions for Constrained
4.4.1 Concepts Related to Optimality	Optimization 194
Conditions 116	5.4 Second-Order Conditions for Rectangular
4.4.2 Optimality Conditions for Functions	Beam Design Problem 199
of a Single Variable 117	5.5 Duality in Nonlinear Programming 201
4.4.3 Optimality Conditions for Functions	5.5.1 Local Duality: Equality Constraints
of Several Variables 122	Case 201

4.5 Necessary Conditions: Equality-Constrained

4.5.1 Lagrange Multipliers 131

Problem 130

Case 206 Exercises for Chapter 5 208

5.5.2 Local Duality: The Inequality Constraints

CONTENTS

NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION 6 Optimum Design with Excel Solver 213	 7.2 Unconstrained Optimum Design Problems 278 7.3 Constrained Optimum Design Problems 281 7.4 Optimum Design Examples with MATLAB 284 7.4.1 Location of Maximum Shear Stress for Two Spherical Bodies in Contact 284 7.4.2 Column Design for Minimum Mass 286 7.4.3 Flywheel Design for Minimum Mass 290 Exercises for Chapter 7 294
 6.1 Introduction to Numerical Methods for Optimum Design 213 6.1.1 Classification of Search Methods 214 6.1.2 What to Do If the Solution Process 	8 Linear Programming Methods for Optimum Design 299 8.1 Linear Functions 300
Fails 215 6.1.3 Simple Scaling of Variables 217 6.2 Excel Solver: An Introduction 218 6.2.1 Excel Solver 218 6.2.2 Roots of a Nonlinear Equation 219 6.2.3 Roots of a Set of Nonlinear	 8.2 Definition of a Standard Linear Programming Problem 300 8.2.1 Standard LP Definition 300 8.2.2 Transcription to Standard LP 302 8.3 Basic Concepts Related to Linear Programming Problems 305
Equations 222 6.3 Excel Solver for Unconstrained Optimization Problems 224 6.4 Excel Solver for Linear Programming	8.3.1 Basic Concepts 305 8.3.2 LP Terminology 310 8.3.3 Optimum Solution to LP Problems 313 8.4 Calculation of Basic Solutions 314 8.4.1 The Tableau 314
Problems 225 6.5 Excel Solver for Nonlinear Programming: Optimum Design of Springs 227 6.6 Optimum Design of Plate Girders Using Excel	 8.4.2 The Pivot Step 316 8.4.3 Basic Solutions to Ax = b 317 8.5 The Simplex Method 321
Solver 231 6.7 Optimum Design of Tension Members 238 6.8 Optimum Design of Compression Members 243 6.8.1 Formulation of the Problem 243 6.8.2 Formulation of the Problem for Inelastic	 8.5.1 The Simplex 321 8.5.2 Basic Steps in the Simplex Method 321 8.5.3 Basic Theorems of Linear Programming 326
Buckling 247 6.8.3 Formulation of the Problem for Elastic Buckling 249 6.9 Optimum Design of Members for Flexure 250	8.6 The Two-Phase Simplex Method—Artificial Variables 334 8.6.1 Artificial Variables 334 8.6.2 Artificial Cost Function 336
6.10 Optimum Design of Telecommunication Poles 263 Exercises for Chapter 6 271	 8.6.3 Definition of the Phase I Problem 336 8.6.4 Phase I Algorithm 337 8.6.5 Phase II Algorithm 339 8.6.6 Degenerate Basic Feasible Solution 345
7 Optimum Design with MATLAB 275	8.7 Postoptimality Analysis 348 8.7.1 Changes in Constraint Limits 348 8.7.2 Ranging Right-Side Parameters 354
7.1 Introduction to the Optimization Toolbox 275 7.1.1 Variables and Expressions 275	8.7.3 Ranging Cost Coefficients 3598.7.4 Changes in the Coefficient

Matrix 361

Exercises for Chapter 8 363

7.1.2 Scalar, Array, and Matrix Operations 276

7.1.3 Optimization Toolbox 276

Algorithms 415

Step 415

10.3.1 Descent Direction and Descent

9 More on Linear Programming Methods	10.3.2 Convergence of Algorithms 417
for Optimum Design 377	10.3.3 Rate of Convergence 417
ior optimality beorgii 577	10.4 Step Size Determination: Basic Ideas 418
9.1 Derivation of the Simplex Method 377	10.4.1 Definition of the Step Size
9.1.1 General Solution to $Ax = b$ 377	Determination Subproblem 418
9.1.2 Selection of a Nonbasic Variable that	10.4.2 Analytical Method to Compute Step
Should Become Basic 379	Size 419
9.1.3 Selection of a Basic Variable that Should	10.5 Numerical Methods to Compute Step Size 421
Become Nonbasic 381	10.5.1 General Concepts 421
9.1.4 Artificial Cost Function 382	10.5.2 Equal-Interval Search 423
9.1.5 The Pivot Step 384	10.5.3 Alternate Equal-Interval Search 425
9.1.6 Simplex Algorithm 384	10.5.4 Golden Section Search 425
	10.6 Search Direction Determination: The
	Steepest-Descent Method 431
9.3 Duality in Linear Programming 387	10.7 Search Direction Determination: The
9.3.1 Standard Primal LP Problem 387	
9.3.2 Dual LP Problem 388	Conjugate Gradient Method 434
9.3.3 Treatment of Equality Constraints 389	10.8 Other Conjugate Gradient Methods 437
9.3.4 Alternate Treatment of Equality	Exercises for Chapter 10 438
Constraints 391	
9.3.5 Determination of the Primal Solution	11 More on Numerical Methods for
from the Dual Solution 392	Unconstrained Optimum Design 443
9.3.6 Use of the Dual Tableau to Recover	Shoomeranea Spiniani Beoign 149
the Primal Solution 395	11.1 More on Step Size Determination 444
9.3.7 Dual Variables as Lagrange	11.1.1 Polynomial Interpolation 444
Multipliers 398	11.1.2 Inexact Line Search: Armijo's
9.4 KKT Conditions for the LP Problem 400	Rule 448
9.4.1 KKT Optimality Conditions 400	11.1.3 Inexact Line Search: Wolfe
9.4.2 Solution to the KKT Conditions 400	Conditions 449
9.5 Quadratic Programming Problems 402	11.1.4 Inexact Line Search: Goldstein Test 450
9.5.1 Definition of a QP Problem 402	11.2 More on the Steepest-Descent Method 451
9.5.2 KKT Necessary Conditions for the QP	11.2.1 Properties of the Gradient Vector 451
Problem 403	11.2.2 Orthogonality of Steepest-Descent
9.5.3 Transformation of KKT Conditions 404	Directions 454
9.5.4 The Simplex Method for Solving QP	11.3 Scaling of Design Variables 456
Problem 405	11.4 Search Direction Determination: Newton's
Exercises for Chapter 9 409	Method 459
-	
10 Numerical Methods for Unconstrained	
	11.4.2 Modified Newton's Method 461
Optimum Design 411	11.4.3 Marquardt Modification 465
10.1 0 1	11.5 Search Direction Determination: Quasi-Newton
10.1 Gradient-Based and Direct Search	Methods 466
Methods 411	11.5.1 Inverse Hessian Updating: The DFP
10.2 General Concepts: Gradient-Based	Method 467
Methods 412	11.5.2 Direct Hessian Updating: The BFGS
10.2.1 General Concepts 413	Method 470
10.2.2 A General Iterative Algorithm 413	11.6 Engineering Applications of Unconstrained
10.3 Descent Direction and Convergence of	Methods 472

11.6.1 Data Interpolation 472

Energy 473

11.6.2 Minimization of Total Potential

14.1.1 General Guidelines 576

14.1.2 Example of a Practical Design

Optimization Problem 577

	11.6.3 Solutions of Nonlinear Equations 475	12.7.2 The CSD Algorithm: Some
	Solutions to Constrained Problems Using	Observations 527
	Unconstrained Optimization Methods 477	Exercises for Chapter 12 527
	11.7.1 Sequential Unconstrained Minimization	•
	Techniques 478	
	11.7.2 Augmented Lagrangian (Multiplier)	13 More on Numerical Methods
	Methods 479	for Constrained Optimum
11.8	Rate of Convergence of Algorithms 481	Design 533
	11.8.1 Definitions 481	Design 999
	11.8.2 Steepest-Descent Method 482	13.1 Potential Constraint Strategy 534
	11.8.3 Newton's Method 483	13.2 Inexact Step Size Calculation 537
	11.8.4 Conjugate Gradient Method 484	13.2.1 Basic Concept 537
	11.8.5 Quasi-Newton Methods 484	13.2.2 Descent Condition 538
	Direct Search Methods 485	13.2.3 CSD Algorithm with Inexact Step
	11.9.1 Univariate Search 485	Size 542
	11.9.2 Hooke-Jeeves Method 486	13.3 Bound-Constrained Optimization 549
Exerc	cises for Chapter 11 487	
	1	13.3.1 Optimality Conditions 549 13.3.2 Projection Methods 550
		13.3.3 Step Size Calculation 552
12	Numerical Methods for Constrained	13.4 Sequential Quadratic Programming: SQP
-	Optimum Design 491	Methods 553
	o pominima a sought 19 1	13.4.1 Derivation of the Quadratic
12.1	Basic Concepts Related to Numerical	Programming Subproblem 554
	Methods 492	13.4.2 Quasi-Newton Hessian
	12.1.1 Basic Concepts Related to Algorithms	Approximation 557
	for Constrained Problems 492	13.4.3 SQP Algorithm 558
	12.1.2 Constraint Status at a Design	13.4.4 Observations on SQP Methods 561
	Point 495	13.4.5 Descent Functions 563
	12.1.3 Constraint Normalization 496	13.5 Other Numerical Optimization Methods 564
	12.1.4 The Descent Function 498	13.5.1 Method of Feasible Directions 564
	12.1.5 Convergence of an Algorithm 498	13.5.2 Gradient Projection Method 566
12 2	Linearization of the Constrained Problem 499	13.5.3 Generalized Reduced Gradient
	The Sequential Linear Programming	Method 567
12.5	Algorithm 506	13.6 Solution to the Quadratic Programming
	12.3.1 Move Limits in SLP 506	Subproblem 569
	12.3.2 An SLP Algorithm 508	13.6.1 Solving the KKT Necessary
	_	Conditions 570
	12.3.3 The SLP Algorithm: Some	13.6.2 Direct Solution to the QP
12.4	Observations 512	Subproblem 571
	Sequential Quadratic Programming 513	Exercises for Chapter 13 572
12.5	Search Direction Calculation: The QP	
	Subproblem 514	
	12.5.1 Definition of the QP Subproblem 514	1.4. D.,,
	12.5.2 Solving of the QP Subproblem 518	14 Practical Applications
12.6	The Step Size Calculation Subproblem 520	of Optimization 575
	12.6.1 The Descent Function 520	
	12.6.2 Step Size Calculation: Line	14.1 Formulation of Practical Design Optimization
	Search 522	Problems 576

12.7 The Constrained Steepest-Descent

12.7.1 The CSD Algorithm 526

Method 525

X CONTENTS

15.1.2 Classification of Mixed Variable

Optimum Design Problems 621

14.2 Gradient Evaluation of Implicit Functions 582	15.1.3 Overview of Solution Concepts 622
14.3 Issues in Practical Design Optimization 587	15.2 Branch-and-Bound Methods 623
14.3.1 Selection of an Algorithm 587	15.2.1 Basic BBM 623
14.3.2 Attributes of a Good Optimization	15.2.2 BBM with Local Minimization 625
Algorithm 588	15.2.3 BBM for General MV-OPT 627
14.4 Use of General-Purpose Software 589	15.3 Integer Programming 628
14.4.1 Software Selection 589	15.4 Sequential Linearization Methods 629
14.4.2 Integration of an Application into	15.5 Simulated Annealing 630
General-Purpose Software 589	15.6 Dynamic Rounding-Off Method 632
14.5 Optimum Design of Two-Member Frame with	15.7 Neighborhood Search Method 633
Out-of-Plane Loads 590	15.8 Methods for Linked Discrete Variables 633
14.6 Optimum Design of a Three-Bar Structure for	15.9 Selection of a Method 635
Multiple Performance Requirements 592	15.10 Adaptive Numerical Method for Discrete
14.6.1 Symmetric Three-Bar Structure 592	Variable Optimization 636
14.6.2 Asymmetric Three-Bar Structure 594	15.10.1 Continuous Variable
14.6.3 Comparison of Solutions 598	Optimization 636
14.7 Optimal Control of Systems by Nonlinear	15.10.2 Discrete Variable Optimization 637
Programming 598	Exercises for Chapter 15 639
14.7.1 A Prototype Optimal Control	
Problem 598	16 Genetic Algorithms for Optimum
14.7.2 Minimization of Error in State	_ ^
Variable 602	Design 643
14.7.3 Minimum Control Effort Problem 608	16.1 Basic Concepts and Definitions 644
14.7.4 Minimum Time Control Problem 609	16.2 Fundamentals of Genetic Algorithms 646
14.7.5 Comparison of Three Formulations	16.3 Genetic Algorithm for Sequencing-Type
for the Optimal Control of System	Problems 651
Motion 611	16.4 Applications 653
14.8 Alternative Formulations for Structural	Exercises for Chapter 16 653
Optimization Problems 612	Exercises for Chapter 10 055
14.9 Alternative Formulations for Time-Dependent	45.37.15.15.15.00.50.50.50.50.50.50.50.50.50.50.50.50
Problems 613	17 Multi-objective Optimum Design
Exercises for Chapter 14 615	Concepts and Methods 657
	•
YYT	17.1 Problem Definition 658
\mathbf{III}	17.2 Terminology and Basic Concepts 660
ADVANCED AND MODERN	17.2.1 Criterion Space and Design Space 660
	17.2.2 Solution Concepts 662
TOPICS ON OPTIMUM	17.2.3 Preferences and Utility Functions 665
DESIGN	17.2.4 Vector Methods and Scalarization
	Methods 666
15 Discrete Variable Optimum Design	17.2.5 Generation of Pareto Optimal Set 666
•	17.2.6 Normalization of Objective
Concepts and Methods 619	Functions 667
15.1 Paris Comments and Dec. 191-19. 620	17.2.7 Optimization Engine 667
15.1 Basic Concepts and Definitions 620	17.3 Multi-objective Genetic Algorithms 667
15.1.1 Definition of Mixed Variable Optimum	17.4 Weighted Sum Method 671
Design Problem: MV-OPT 620	17.5 Weighted Min-Max Method 672

17.6 Weighted Global Criterion Method 673

17.7 Lexicographic Method 674

CONTENTS xi

17.8 Bounded Objective Function Method 675 17.9 Goal Programming 676 17.10 Selection of Methods 677 Exercises for Chapter 17 678	 19.1.3 Crossover Operation to Generate the Trial Design 716 19.1.4 Acceptance/Rejection of the Trial Design 717 10.1.5 PEAN TRANSPORT
18 Global Optimization Concepts and Methods 681	19.1.5 DE Algorithm 717 19.2 Ant Colony Optimization 718 19.2.1 Ant Behavior 718 19.2.2 ACO Algorithm for the Traveling Salesman Problem 721
18.1 Basic Concepts of Solution Methods 682 18.1.1 Basic Solution Concepts 682	19.2.3 ACO Algorithm for Design Optimization 724
18.1.2 Overview of Methods 683 18.2 Overview of Deterministic Methods 684 18.2.1 Covering Methods 684 18.2.2 Zooming Method 685	 19.3 Particle Swarm Optimization 727 19.3.1 Swarm Behavior and Terminology 727 19.3.2 Particle Swarm Optimization Algorithm 728
18.2.3 Methods of Generalized Descent 686 18.2.4 Tunneling Method 688	Exercises for Chapter 19 729
18.3 Overview of Stochastic Methods 689 18.3.1 Pure Random Search Method 690 18.3.2 Multistart Method 691 18.3.3 Clustering Methods 691	20 Additional Topics on Optimum Design 731
18.3.4 Controlled Random Search: Nelder-Mead Method 69418.3.5 Acceptance-Rejection Methods 697	 20.1 Meta-Models for Design Optimization 731 20.1.1 Meta-Model 731 20.1.2 Response Surface Method 733
18.3.6 Stochastic Integration 698 18.4 Two Local-Global Stochastic Methods 699 18.4.1 Conceptual Local-Global	20.1.3 Normalization of Variables 737 20.2 Design of Experiments for Response Surface Generation 741
Algorithm 699 18.4.2 Domain Elimination Method 700 18.4.3 Stochastic Zooming Method 702 18.4.4 Operations Analysis of Methods 702	 20.3 Discrete Design with Orthogonal Arrays 749 20.4 Robust Design Approach 754 20.4.1 Robust Optimization 754 20.4.2 The Taguchi Method 761
 18.5 Numerical Performance of Methods 705 18.5.1 Summary of Features of Methods 705 18.5.2 Performance of Some Methods with Unconstrained Problems 706 	 20.5 Reliability-Based Design Optimization—Design under Uncertainty 767 20.5.1 Review of Background Material for RBDO 768
 18.5.3 Performance of Stochastic Zooming and Domain Elimination Methods 707 18.5.4 Global Optimization of Structural Design Problems 708 	20.5.2 Calculation of the Reliability Index 774 20.5.3 Formulation of Reliability-Based Design Optimization 784
Exercises for Chapter 18 710	
19 Nature-Inspired Search Methods 713	Appendix A: Vector and Matrix Algebra 785
19.1 Differential Evolution Algorithm 714 19.1.1 Generation of an Initial Population 715 19.1.2 Generation of a Donor Design 716	A.1 Definition of Matrices 785 A.2 Types of Matrices and Their Operations 787 A.2.1 Null Matrix 787 A.2.2 Vector 787 A.2.3 Addition of Matrices 787

xii CONTENTS

	A.2.4 Multiplication of Matrices 788	A.5.1 Linear Independence of a Set of
	A.2.5 Transpose of a Matrix 790	Vectors 810
	A.2.6 Elementary Row-Column	A.5.2 Vector Spaces 814
	Operations 790	A.6 Eigenvalues and Eigenvectors 816
	A.2.7 Equivalence of Matrices 790	A.7 Norm and Condition Number of a Matrix 81
	A.2.8 Scalar Product—Dot Product of	A.7.1 Norm of Vectors and Matrices 818
	Vectors 790	A.7.2 Condition Number of a Matrix 819
	A.2.9 Square Matrices 791	Exercises for Appendix A 819
	A.2.10 Partitioning of Matrices 791	- Freedom 101 - Freedom 101
A 3	Solving n Linear Equations in n	
1110	Unknowns 792	Appendix B: Sample Computer
	A.3.1 Linear Systems 792	
	A.3.2 Determinants 793	Programs 823
	A.3.3 Gaussian Elimination Procedure 796	B.1 Equal Interval Search 823
	A.3.4 Inverse of a Matrix: Gauss-Jordan	B.2 Golden Section Search 826
	Elimination 800	
		B.3 Steepest-Descent Method 829
A.4	Solution to m Linear Equations in n	B.4 Modified Newton's Method 829
	Unknowns 803	
	A.4.1 Rank of a Matrix 803	Bibliography 841
	A.4.2 General Solution of $m \times n$ Linear	Answers to Selected Exercises 851
	Equations 804	Allowers to delected Exercises (191
A.5	Concepts Related to a Set of Vectors 810	Index 861