

Modeling, Analysis and Optimization of Process and Energy Systems

F. Carl Knopf

Contents

Preface Conversi List of Sy	xiii on Factors xvii ymbols xix	Problems 39 3. Computer-Aided Solutions of Process Material Balances: The Sequential		
			ılar Solution Approach 42	
	duction to Energy Usage, Cost,			
and l	Efficiency 1	3.1	Elementary Material Balance	
1.1	Energy Utilization in the United States 1	,	Modules 42 3.1.1 Mixer 43	
1.1	The Cost of Energy 1		3.1.2 Separator 43	
	Energy Efficiency 4		3.1.3 Splitter 44	
1.3	The Cost of Self-Generated versus Purchased		3.1.4 Reactors 45	
1.4		3.2	Sequential Modular Approach: Material	
1.5	Electricity 10 The Cost of Firel and Firel Heating	2.2	Balances with Recycle 46	
1.5	The Cost of Fuel and Fuel Heating Value 11	3.3	Understanding Tear Stream Iteration	
1.6	· ••• • • • • • • • • • • • • • • • • •	2.0	Methods 49	
1.6	Text Organization 12		3.3.1 Single-Variable Successive	
1.7	Getting Started 15		Substitution Method 49	
1.8	Closing Comments 16		3.3.2 Multidimensional Successive	
	References 16		Substitution Method 50	
	Problems 17		3.3.3 Single-Variable Wegstein	
			Method 52	
2. Engi	neering Economics with VBA Procedures 19		3.3.4 Multidimensional Wegstein Method 53	
2.1		3.4	Material Balance Problems with	
2.1	Introduction to Engineering Economics 19		Alternative Specifications 58	
2.2	The Time Value of Money: Present Value	3.5	Single-Variable Optimization	
	(PV) and Future Value (FV) 19		Problems 61	
2.3	Annuities 22		3.5.1 Forming the Objective Function	
2.4	Comparing Process Alternatives 29		for Single-Variable Constrained	
	2.4.1 Present Value 31		Material Balance Problems 61	
	2.4.2 Rate of Return (ROR) 31		3.5.2 Bounding Step or Bounding Phase:	
	2.4.3 Equivalent Annual Cost/Annual Capital		Swann's Equation 61	
2.5	Recovery Factor (CRF) 32		3.5.3 Interval Refinement Phase: Interval	
	Plant Design Economics 33	2.6	Halving 65	
2.6	Formulating Economics-Based Energy	3.6	Material Balance Problems with Local	
2.7	Optimization Problems 34	0.77	Nonlinear Specifications 66	
2.7	Economic Analysis with Uncertainty: Monte	3.7	Closing Comments 68	
2.0	Carlo Simulation 36		References 69	
2.8	Closing Comments 38		Problems 70	

Problems

125

4.	Materi	ater-Aided Solutions of Process al Balances: The Simultaneous	6.		duction to Data Reconciliation and Gross Detection 132
		Solution of Linear Equation Sets: The		6.1	Standard Deviation and Probability Density Functions 133
	4.1	Simultaneous Approach 76 4.1.1 The Gauss–Jordan Matrix Elimination Method 76		6.2	Data Reconciliation: Excel Solver 136 6.2.1 Single-Unit Material Balance: Excel Solver 136
		4.1.2 Gauss–Jordan Coding Strategy for Linear Equation Sets 78			6.2.2 Multiple-Unit Material Balance: Excel Solver 138
		4.1.3 Linear Material Balance Problems: Natural Specifications 78		6.3	Data Reconciliation: Redundancy and Variable Types 138
		4.1.4 Linear Material Balance Problems: Alternative Specifications 82		6.4	Data Reconciliation: Linear and Nonlinear Material and Energy Balances 143
	4.2	Solution of Nonlinear Equation Sets: The Newton–Raphson Method 82		6.5	Data Reconciliation: Lagrange Multipliers 149
		 4.2.1 Equation Linearization via Taylor's Series Expansion 82 4.2.2 Nonlinear Equation Set Solution 			6.5.1 Data Reconciliation: Lagrange Multiplier Compact Matrix
		via the Newton–Raphson Method 83		6.6	Notation 152 Gross Error Detection and Identification 154
		4.2.3 Newton–Raphson Coding Strategy for Nonlinear Equation Sets 86			6.6.1 Gross Error Detection: The Global Test (GT) Method 154
		4.2.4 Nonlinear Material Balance Problems: The Simultaneous Approach 90			6.6.2 Gross Error (Suspect Measurement) Identification: The Measurement Test (MT) Method: Linear Constraints 15:
		References 92 Problems 93			6.6.3 Gross Error (Suspect Measurement) Identification: The Measurement Test Method: Nonlinear Constraints 156
				6.7	Closing Remarks 158 References 158
5.	Proces	s Energy Balances 98			Problems 158
	5.1 5.2	Introduction 98 Separator: Equilibrium Flash 101 5.2.1 Equilibrium Flash with Recycle: Sequential Modular Approach 103	7.	Perfo	Furbine Cogeneration System ormance, Design, and Off-Design ulations: Ideal Gas Fluid Properties 16
	5.3	Equilibrium Flash with Recycle: Simultaneous Approach 109		7.1	Equilibrium State of a Simple Compressible Fluid: Development of the $T ds$
	5.4	Adiabatic Plug Flow Reactor (PFR) Material and Energy Balances Including Rate Expressions: Euler's First-Order Method 112 5.4.1 Reactor Types 112			Equations 165 7.1.1 Application of the <i>T ds</i> Equations to an Ideal Gas 166 7.1.2 Application of the <i>T ds</i> Equations to an Ideal Gas: Isentropic
	5.5	Styrene Process: Material and Energy Balances with Reaction Rate 117		7.2	Process 166 General Energy Balance Equation for an
	5.6	Euler's Method versus Fourth-Order Runge– Kutta Method for Numerical Integration 121 5.6.1 The Euler Method: First-Order ODEs 121		7.3	Open System 167 Cogeneration Turbine System Performance Calculations: Ideal Gas Working Fluid 167 7.3.1 Compressor Performance
	~ ~	5.6.2 RK4 Method: First-Order ODEs 122			Calculations 167 7.3.2 Turbine Performance
	5.7	Closing Comments 124 References 125		7.4	Calculations 168 Air Basic Gas Turbine Performance

Calculations

169

7.5	Energy Balance for the Combustion Chamber 172 7.5.1 Energy Balance for the Combustion Chamber: Ideal Gas Working Fluid 172	8.6 Mixing Rules for EOS 213 8.7 Closing Remarks 215 References 216 Problems 216
7.6	The HRSG: Design Performance Calculations 173 7.6.1 HRSG Design Calculations: Exhaust Gas Ideal and Water-Side Real	9. Gas Turbine Cogeneration System Performance, Design, and Off-Design Calculations: Real Fluid Properties 22:
7.7	Properties 176 Gas Turbine Cogeneration System Performance with Design HRSG 177 7.7.1 HRSG Material and Energy Balance Calculations Using Excel Callable Sheet Functions 179	9.1 Cogeneration Gas Turbine System Performance Calculations: Real Physical Properties 223 9.1.1 Air Compressor (AC) Performance Calculation 224
7.8	HRSG Off-Design Calculations: Supplemental Firing 180 7.8.1 HRSG Off-Design Performance: Overall Energy Balance Approach 180	9.1.2 Energy Balance for the Combustion Chamber (CC) 224 9.1.3 C Functions for Combustion Temperature and Exhaust Gas Physical Properties 224
	7.8.2 HRSG Off-Design Performance: Overall Heat Transfer Coefficient Approach 181	9.1.4 Gas and Power Turbine (G&PT) Performance Calculations 229
	Gas Turbine Design and Off-Design Performance 185 7.9.1 Gas Turbines Types and Gas Turbine Design Conditions 185 7.9.2 Gas Turbine Design and Off-Design Using Performance Curves 186 7.9.3 Gas Turbine Internal Mass Flow Patterns 186 7.9.4 Industrial Gas Turbine Off-Design (Part Load) Control Algorithm 188 7.9.5 Aeroderivative Gas Turbine Off-Design (Part Load) Control Algorithm 189 7.9.6 Off-Design Performance Algorithm for Gas Turbines 189 Closing Remarks 193 References 194 Problems 194 Iopment of a Physical Properties	9.1.5 Air Preheater (APH) 230 9.2 HRSG: Design Performance Calculations 230 9.3 HRSG Off-Design Calculations: Supplementa Firing 232 9.3.1 HRSG Off-Design Performance: Overall Energy Balance Approach 233 9.3.2 HRSG Off-Design Performance: Overall Heat Transfer Coefficient Approach 234 9.4 Gas Turbine Design and Off-Design Performance 235 9.5 Closing Remarks 237 References 238 Problems 238 10. Gas Turbine Cogeneration System Economic
8.1	ram for Cogeneration Calculations 198 Available Function Calls for Cogeneration	Design Optimization and Heat Recovery Steam Generator Numerical Analysis 24
8.2	Calculations 198 Pure Species Thermodynamic	10.1 Cogeneration System: Economy of Scale 244
8.3	Properties 202 Derivation of Working Equations for Pure Species Thermodynamic Properties 207	10.2 Cogeneration System Configuration: Site Power-to-Heat Ratio 244 10.3 Economic Optimization of a
8.4	Ideal Mixture Thermodynamic Properties: General Development and Combustion Reaction Considerations 209 8.4.1 Ideal Mixture 209 8.4.2 Changes in Enthalpy and Entropy 209	Cogeneration System: The CGAM Problem 245 10.3.1 The Objective Function: Cogeneration System Capital and Operating Costs 246 10.3.2 Optimization: Variable Selection and
8.5	Ideal Mixture Thermodynamic Properties: Apparent Difficulties 211	Solution Strategy 248 10.3.3 Process Constraints 249

	10.4	Economic Design Optimization of the CGAM Problem: Ideal Gas 249 10.4.1 Air Preheater (APH) Equations 249 10.4.2 CGAM Problem Physical Properties 249		12.4.7 GE Gas Turbine HRSG Boiler 8 Performance Supplemental Firing (Based on Fuel <i>HHV</i>) 296 12.4.8 Allison Gas Turbine Performance (Based on Fuel <i>HHV</i>) 296
	10.5	The CGAM Cogeneration Design Problem: Real Physical Properties 250		12.4.9 Allison Gas Turbine HRSG Boiler 7 Performance (Based on Fuel
	10.6 10.7	Comparing CogenD and General Electric's GateCycle TM 253 Numerical Solution of HRSG Heat Transfer		 HHV) 297 12.4.10 Allison Gas Turbine HRSG Boiler 7 Performance Supplemental Firing (Based on Fuel HHV) 297
		Problems 254 10.7.1 Steady-State Heat Conduction in a One-Dimensional Wall 254 10.7.2 Unsteady-State Heat Conduction in a	12.5	Predicting the Cost of Natural Gas and Purchased Electricity 298 12.5.1 Natural Gas Cost 299 12.5.2 Purchased Electricity Cost 299
		One-Dimensional Wall 255 10.7.3 Steady-State Heat Conduction in the HRSG 259	12.6	Development of a Multiperiod Dispatch Model for the Cogeneration Facility 302
	10.8	Closing Remarks 266 References 267 Problems 267	12.7	Closing Comments 309 References 310 Problems 310
			13. Proces	ss Energy Integration 314
11.		Reconciliation and Gross Error tion in a Cogeneration System 272	13.1	Introduction to Process Energy Integration/ Minimum Utilities 314
	11.1	Cogeneration System Data Reconciliation 272	13.2	Temperature Interval/Problem Table Analysis with 0° Approach Temperature 316
	11.2	Cogeneration System Gross Error Detection and Identification 278	13.3 13.4	The Grand Composite Curve (GCC) 317 Temperature Interval/Problem Table
	11.3 11.4	Visual Display of Results 281 Closing Comments 281		Analysis with "Real" Approach Temperature 318
		References 282 Problems 283	13.5	Determining Hot and Cold Stream from the Process Flow Sheet 319
12	Ontim	ol Down Discortal in	13.6	Heat Exchanger Network Design with Maximum Energy Recovery (MER) 324
12.		al Power Dispatch in eneration Facility 284		13.6.1 Design above the Pinch 325 13.6.2 Design below the Pinch 327
	12.1	Developing the Optimal Dispatch	13.7	Heat Exchanger Network Design with Stream Splitting 328
	12.2	Model 284 Overview of the Cogeneration System 286	13.8	Heat Exchanger Network Design with Minimum Number of Units (MNU) 329
	12.3	General Operating Strategy Considerations 287	13.9	Software for Teaching the Basics of Heat Exchanger Network Design (Teaching Heat
	12.4	Equipment Energy Efficiency 287 12.4.1 Stand-Alone Boiler (Boiler 4)	13.10	Exchanger Networks (THEN) 331 Heat Exchanger Network Design: Distillation
		Performance (Based on Fuel Higher Heating Value (HHV)) 288	13.11	Columns 331 Closing Remarks 336
		12.4.2 Electric Chiller Performance 289 12.4.3 Steam-Driven Chiller Performance 290		References 336 Problems 337
		12.4.4 GE Air Cooler Chiller Performance 291	14. Proces	s and Site Utility Integration 343
		12.4.5 GE Gas Turbine Performance (Based on Fuel <i>HHV</i>) 294	14.1	Gas Turbine-Based Cogeneration Utility
		12.4.6 GE Gas Turbine HRSG Boiler 8 Performance (Based on Fuel	14.2	System for a Processing Plant 343 Steam Turbine-Based Utility System for a

Processing Plant 353

HHV) 295

	14.3	Site-Wide Utility System Considerations 356		16.1.2 Extraction Flow Rates and Feedwater Heaters 402
	14.4	Closing Remarks 362 References 363		16.1.3 Auxiliary Turbine/High-Pressure Feedwater Pump 402
		Problems 363		16.1.4 Low-Pressure Feedwater Pump 403
				16.1.5 Turbine Exhaust End Loss 403
15	S. Site U	Utility Emissions 368		16.1.6 Steam Turbine System Heat Rate and Performance Parameters 405
	15.1	Emissions from Stoichiometric	16.2	Power Plant Off-Design Performance (Part Load with Throttling Control
		Considerations 369		
	15.2	Emissions from Combustion Equilibrium		
		Calculations 370		and the respect to the
		15.2.1 Equilibrium Reactions 371		Efficiencies: Sub Off_Design_Initial_ Estimates () 406
		15.2.2 Combustion Chamber Material		Estimates () 406 16.2.2 Modify Pressures: Sub Pressure_
		Balances 371		Iteration () 406
		15.2.3 Equilibrium Relations for Gas-Phase		16.2.3 Modify Efficiencies: Sub Update
		Reactions/Gas-Phase Combustors 372		Efficiencies () 408
		15.2.4 Equilibrium Compositions from	16.3	
		Equilibrium Constants 376	10.5	2
	15.3	Emission Prediction Using Elementary		•
		Kinetics Rate Expressions 380	16.4	1 act on a commona
		15.3.1 Combustion Chemical Kinetics 380	165	Utility Power Plant 413
		15.3.2 Compact Matrix Notation for the Species	16.5	
		Net Generation (or Production)		References 417
		Rate 381		Problems 417
	15.4	Models for Predicting Emissions from Gas		
		Turbine Combustors 382	17. Alte	rnative Energy Systems 419
		15.4.1 Perfectly Stirred Reactor for Combustion		413
		Processes: The Material Balance	17.1	Levelized Costs for Alternative Energy
		Problem 382	17.1	Systems 419
		15.4.2 The Energy Balance for an Open System	17.2	· · ·
		with Reaction (Combustion) 385	17.2	of Levelized Cost 420
		15.4.3 Perfectly Stirred Reactor Energy	17.3	
		Balance 385	17.3	·
		15.4.4 Solution of the Perfectly Stirred Reactor		0 1 20 000 00000
		Material and Energy Balance Problem		Nuclear Reactor (HTGR) 425 References 427
		Using the Provided CVODE Code 386		
		15.4.5 Plug Flow Reactor for Combustion		Problems 427
		Processes: The Material Balance		
		Problem 388	Appendi	x. Bridging Excel and C Codes 429
		15.4.6 Plug Flow Reactor for Combustion		
		Processes: The Energy Balance	A .1	Introduction 429
		Problem 389	A.2	Working with Functions 431
	15.5	Closing Remarks 393	A.3	Working with Vectors 434
		References 393	A.4	Working with Matrices 442
		CVODE Tutorial 393		A.4.1 Gauss–Jordan Matrix Elimination
		Problems 394		Method 442
1.	~			A.4.2 Coding the Gauss-Jordan Matrix
10.		Fired Conventional Utility Plants	. ~	Elimination Method 443
		O ₂ Capture (Design and Off-Design	A.5	Closing Comments 446
_	Steam	Turbine Performance) 397		References 448
				Tutorial 448
	16.1	Power Plant Design Performance (Using	. •	Microsoft C++ 2008 Express: Creating C Programs
		Operational Data for Full-Load		and DLLs 448
		Operation) 398	.	
		16.1.1 Turbine System: Design Case (See	Index	458

Example 16.1.xls)

401