
Disturbance Analysis for Power Systems

Mohamed A. Ibrahim

CONTENTS

Pr	Pretace		
1	POW	VER SYSTEM DISTURBANCE ANALYSIS FUNCTION	1
	1.1	Analysis Function of Power System Disturbances	2
	1.2	Objective of DFR Disturbance Analysis	4
	1.3	Determination of Power System Equipment Health Through System Disturbance Analysis	5
	1.4	Description of DFR Equipment	6
	1.5	Information Required for the Analysis of System Disturbances	7
	1.6	Signals to be Monitored by a Fault Recorder	8
	1.7	DFR Trigger Settings of Monitored Voltages and Currents	10
	1.8	DFR and Numerical Relay Sampling Rate and Frequency Response	11
	1.9	Oscillography Fault Records Generated by Numerical Relaying	11
		Integration and Coordination of Data Collected	
	1 11	from Intelligent Electronic Devices	12
	1.11	DFR Software Analysis Packages	12
	1.12	Verification of DFR Accuracy in Monitoring Substation Ground Currents	21
	1.13	Using DFR Records to Validate Power System Short-Circuit Study Models	24
	1 14	COMTRADE Standard	31
	1.17	COMTRADE Standard	31
2	PHE OF C	NOMENA RELATED TO SYSTEM FAULTS AND THE PROCESS CLEARING FAULTS FROM A POWER SYSTEM	33
	2.1	Shunt Fault Types Occurring in a Power System	33
	2.2	Classification of Shunt Faults	34
	2.3	Types of Series Unbalance in a Power System	39
	2.4	Causes of Disturbance in a Power System	39
			:

viii CONTENTS

2.5	Fault Incident Point	40
2.6	Symmetric and Asymmetric Fault Currents	41
2.7	Arc-Over or Flashover at the Voltage Peak	44
2.8	Evolving Faults	48
2.9	Simultaneous Faults	51
2.10	Solid or Bolted ($R_F = 0$) Close-in Phase-to-Ground Faults	52
2.11	Sequential Clearing Leading to a Stub Fault that Shows a Solid ($R_F = 0$) Remote Line-to-Ground Fault	53
2.12	Sequential Clearing Leading to a Stub Fault that Shows a Resistive Remote Line-to-Ground Fault	54
2.13	High-Resistance Tree Line-to-Ground Faults	56
2.14	High-Resistance Line-to-Ground Fault Confirming the Resistive Nature of the Fault Impedance When	
	Fed from One Side Only (Stub)	58
	Phase-to-Ground Faults on an Ungrounded System	59
	Current in Unfaulted Phases During Line-to-Ground Faults	60
2.17	Line-to-Ground Fault on the Grounded-Wye (GY) Side of a Delta/GY Transformer	63
2.18	Line-to-Line Fault on the Grounded-Wye Side	<i></i>
0.10	of a Delta/GY Transformer	65
2.19	Line-to-Line Fault on the Delta Side of a Delta/GY Transformer with No Source Connected to the Delta Winding	66
2.20	Subcycle Relay Operating Time During an EHV	
	Double-Phase-to-Ground Fault	68
2.21	Self-Clearing of a C-g Fault Inside an Oil Circuit Breaker Tank	69
2.22	Self-Clearing of a B-g Fault Caused by a Line Insulator Flashover	70
2.23	Delayed Clearing of a Pilot Scheme Due to a Delayed	
	Communication Signal	71
2.24	Sequential Clearing of a Line-to-Ground Fault	72
2.25	Step-Distance Clearing of an L-g Fault	74
2.26	Ground Fault Clearing in Steps by an Instantaneous Ground Element at One End and a Ground Time Overcurrent Element at the Other End	76
2.27	Ground Fault Clearing by Remote Backup Following the Failures of Both Primary and Local Backup (Breaker Failure)	. 0
	Protection Systems	78
2.28	Breaker Failure Clearing of a Line-to-Ground Fault	79
2.29	Determination of the Fault Incident Point and Classification of Faults Using a Comparison Method	81

3		VER SYSTEM PHENOMENA AND THEIR IMPACT RELAY SYSTEM PERFORMANCE	85
	3.1	Power System Oscillations Leading to Simultaneous Tripping of Both Ends of a Transmission Line and the Tripping of One End Only on an Adjacent Line	86
	3.2	Generator Oscillations Triggered by a Combination of L-g Fault, Loss of Generation, and Undesired Tripping of Three 138-kV Lines	91
	3.3	Stable Power Swing Generated During Successful Synchronization of a 200-MW Unit	95
	3.4	Major System Disturbance Leading to Different Oscillations for Different Transmission Lines Emanating from the Same Substation	96
	3.5	Appearance of 120-Hz Current at a Generator Rotor During a High-Side Phase-to-Ground Fault	98
	3.6	Generator Negative-Sequence Current Flow During Unbalanced Faults	101
	3.7	Inadvertent (Accidental) Energization of a 170-MW Hydro Generating Unit	102
	3.8	Appearance of Third-Harmonic Voltage at Generator Neutral	104
	3.9	Variations of Generator Neutral Third-Harmonic Voltage Magnitude During System Faults	106
	3.10	Generator Active and Reactive Power Outputs During a GSU High-Side L-g Fault	107
	3.11	Loss of Excitation of a 200-MW Unit	108
	3.12	Generator Trapped (Decayed) Energy	110
	3.13	Nonzero Current Crossing During Faults and Mis-Synchronization Events	112
	3.14	Generator Neutral Zero-Sequence Voltage Coupling Through Step-Up Transformer Interwinding Capacitance	112
	3.15	During a High-Side Ground Fault Energizing a Transformer with a Fault on the High Side within the Differential Zone	113 115
	3,16	Transformer Inrush Currents	118
		Inrush Currents During Energization of the Grounded-Wye	
	2.17	Side of a YG/Delta Transformer	120
	3.18	Inrush Currents During Energization of a Transformer Delta Side	121

X CONTENTS

3.19	Two-Phase Energization of an Autotransformer with a Delta Winding Tertiary During a Simultaneous	
	L-g Fault and an Open Phase	124
3.20	Phase Shift of 30° Across the Delta/Wye Transformer Banks	127
3.21	Zero-Sequence Current Contribution from a Remote Two-Winding Delta/YG Transformer	128
3.22	Conventional Power-Regulating Transformer	
	Core Type Acting as a Zero-Sequence Source	129
3.23	Circuit Breaker Re-Strikes	130
3.24	Circuit Breaker Pole Disagreement During a Closing Operation	132
3.25	Circuit Breaker Opening Resistors	133
3.26	Secondary Current Backfeeding to Breaker Failure	
	Fault Detectors	134
3.27	Magnetic Flux Cancellation	136
3.28	Current Transformer Saturation	138
3.29	Current Transformer Saturation During an Out-of-Step System Condition Initiated by Mis-Synchronization of a	
	Generator Breaker	141
	Capacitive Voltage Transformer Transient	143
3.31	Bushing Potential Device Transient During Deenergization of an EHV Line	144
3.32	Capacitor Bank Breaker Re-Strike Following Interruption of a Capacitor Normal Current	146
3.33	Capacitor Bank Closing Transient	147
3.34	Shunt Capacitor Bank Outrush into Close-in System Faults	149
3.35	SCADA Closing into a Three-Phase Fault	153
3.36	Automatic Reclosing into a Permanent Line-to-Ground Fault	154
3.37	Successful High-Speed Reclosing Following	
	a Line-to-Ground Fault	155
3.38	Zero-Sequence Mutual Coupling-Induced Voltage	156
3.39	Mutual Coupling Phenomenon Causing False Tripping of a High-Impedance Bus Differential Relay During	
	a Line Phase-to-Ground Fault	159
3.40	Appearance of Nonsinusoidal Neutral Current During the	
	Clearing of Three-Phase Faults	162
3.41	Current Reversal on Parallel Lines During Faults	164
3.42	Ferranti Voltage Rise	166
3.43	Voltage Oscillation on EHV Lines Having Shunt Reactors at their Ends	168

172
173
174
176
177
179
183
104
184
186
186
100
193
204
212
214
222
221
231
236
250
244
247

Xİİ CONTENTS

	Case Study 4.11 Tripping of a 150-MW Combined-Cycle	
	Plant Due to a Failed Lead of One Generator	
	Terminal Surge Capacitor	250
	Case Study 4.12 Generator Stator Ground Fault in an	
	800-MW Fossil Unit	260
	Case Study 4.13 Three-Phase Fault at the Terminal of an	
	800-MW Generator Unit	265
	Case Study 4.14 Three-Phase Fault at the Terminal of a	
	50-MW Generator Due to a Cable Connection Failure	271
	Case Study 4.15 Generator Stator Phase-to-Phase-to-Ground	
	Fault Caused by Failure of the Rotor Fan Blade	276
	Case Study 4.16 Undesired Tripping of a Pump Storage Plant	
	During a Close-in Phase-to-Ground 345-kV Line Fault	286
	Case Study 4.17 Tripping of an 800-MW Plant and the	
	Associated EHV Lines During a 345-kV Bus Fault	293
	Case Study 4.18 Tripping of a 150-MW Combined-Cycle	
	Plant During an External 138-kV Three-Phase Fault	296
	Case Study 4.19 Tripping of a 150-MW Combined-Cycle Plant	
	During a Disturbance in the 138-kV Transmission System	303
	Case Study 4.20 Undesired Tripping of a 150-MW	
	Combined-Cycle Plant Following Successful	
	Clearing of a 138-kV Double-Phase-to-Ground Fault	308
	Case Study 4.21 Undesired Tripping of an Induction	
	Generator by a Differential Relay Having a Capacitor	211
	Bank Within the Protection Zone	311
	Case Study 4.22 Undesired Tripping of a Steam Unit Upon Its	
	First Synchronization to the System During the Commissioning	214
	Phase of a Combined-Cycle Plant	314
	Case Study 4.23 Sequential Shutdown of a Steam-Driven	210
	Generating Unit as Part of a 500-MW Combined-Cycle Plant	318
	Case Study 4.24 Wiring Errors Leading to Undesired Generator	
	Numerical Differential Relay Operation During the	320
	Commissioning Phase of a New Unit Case Study 4.25 Phasing a New Generator into the System	320
	Prior to Commissioning	324
	Case Study 4.26 Third-Harmonic Undervoltage Element Setting	324
	Procedure for 100% Stator Ground Fault Protection	327
	Case Study 4.27 Basis for Setting the Generator Relaying	341
	Elements to Provide System Backup Protection	330
	Elements to Frovide System Dackup Frotection	550
5	CASE STUDIES RELATED TO TRANSFORMER SYSTEM	
_	DISTURBANCES	335
	5.1 Transformer Regice	226

5.2 Transformer Differential Protection Basics

344

5.3	Case Studies	347
	Case Study 5.1 Energization of a 5-MVA 13.8/4.16-kV Station	
	Service Transformer with a 13.8-kV Phase-to-Phase Bus Fault	
	Within the Transformer Differential Protection Zone	347
	Case Study 5.2 Lack of Protection Redundancy for a	
	Generator Step-up Transformer Leads to Interruption	
	of a 230-kV Area	353
	Case Study 5.3 Undesired Operation of a Numerical	
	Transformer Differential Relay Due to a Relay Setting	
	Error in the Winding Configuration	357
	Case Study 5.4 Location of a 13.8-kV Switchgear	
	Phase-to-Phase Fault Using Transformer Differential	
	Numerical Relay Fault Records	363
	Case Study 5.5 Operation of a Unit Step-Up Transformer	
	with an Open Phase on the 13.8-kV Delta Winding	370
	Case Study 5.6 Using a Transformer Phasing Diagram,	
	Digital Fault Recorder Record, and Relay Targets to Confirm	
	the Damaged Phase of a Unit Auxiliary Transformer Failure	375
	Case Study 5.7 Failure of a 450-MVA 345/138/13.2-kV	
	Autotransformer	381
	Case Study 5.8 Failure of a 750-kVA 13.8/0.480-kV Station Service	
	Transformer Due to a Possible Ferroresonance Condition	387
	Case Study 5.9 Undesired Tripping of a Numerical Transformer	
	Differential Relay During an External Line-to-Ground Fault	394
	Case Study 5.10 Undesired Operation of Numerical	
	Transformer Differential Relays During Energization	
	of Two 75-MVA 138/13.8-kV GSU Transformers	407
	Case Study 5.11 Undesired Operation of a Numerical	
	Transformer Differential Relay During Energization of a	
	5-MVA 13.8/4.16-kV Station Service Transformer	411
	Case Study 5.12 Phase-to-Phase Fault Evolving into a	
	Three-Phase Fault at the High Side of a 5-MVA	
	13.8/4.16-kV Station Service Transformer	414
	Case Study 5.13 Phase-to-Phase Fault Evolving into a	
	Three-Phase Fault at the 13.8-kV Bus Connection of	
	a 2-MVA 13.8/0.480-kV Station Service Enclosure	420
	Case Study 5.14 Phase-to-Phase Fault in a 13.8-kV Switchgear	
	Caused by Heavy Rain Evolving into a Three-Phase Fault	426
	Case Study 5.15 Undesired Operation of a Numerical Transformer	
	Differential Relay Due to a Missing CT Cable Connection	
	as an Input to the Relay Wiring	430
	Case Study 5.16 Phase-to-Ground Fault Caused by Flashover of a	
	Transformer 115-kV Bushing Due to a Bird Droppings	434

XIV CONTENTS

	Case Study 5.17 Using a Transformer Numerical Relay Oscillography Record to Analyze Phase-to-Ground	
	Faults in a 4.16-kV Low-Resistance Grounding Supply	439
	Case Study 5.18 Phase-to-Phase Fault Caused by a Squirrel in	439
	a 13.8-kV Cable Bus Which Evolves into a Three-Phase Fault	447
		44/
	Case Study 5.19 13.8-kV Transformer Lead Phase-to-Phase	
	Fault Due to Animal Contact, Evolving into a 115-kV	451
	Transformer Bushing Fault	431
	Case Study 5.20 Undesired Tripping of a Numerical	
	Multifunction Transformer Relay by Assertion of a Digital	456
	Input Wired to the Buchholz Relay Trip Output	430
	E STUDIES RELATED TO OVERHEAD TRANSMISSION-LINE TEM DISTURBANCES	461
6.1	Line Protection Basics	463
6.2	Case Studies	466
	Case Study 6.1 Using a DFR Record From One End Only	
	to Determine Local and Remote-End Clearing Times	
	for a Line-to-Ground Fault	466
	Case Study 6.2 Analysis of Clearing Times for a Phase-to-Ground	
	Fault from Both Ends of a 345-kV Transmission Line Using	
	Oscillograms from One End Only	469
	Case Study 6.3 Analysis of a Three-Phase Fault Caused	
	by Lightning	471
	Case Study 6.4 Analysis of a Double-Phase-to-Ground	
	765-kV Fault Caused by Lightning	473
	Case Study 6.5 Assessment of Transmission Tower Footing	
	Resistance by Analyzing a Three-Phase-to-Ground Fault	
	Caused by Lightning	476
	Case Study 6.6 115-kV Phase-to-Ground Fault Cleared	
	First from a Solidly Grounded System, Then Connected	
	and Cleared from an Ungrounded System	478
	Case Study 6.7 345-kV Phase-to-Ground Fault (C-g) Caused	
	by an Act of Vandalism	485
	Case Study 6.8 345-kV Phase-to-Ground (A-g) Fault Due to	
	an Accident Along the Line Right-of-Way	489
	Case Study 6.9 False Tripping of a 138-kV Current Differential	
	Relaying System During an External Phase-to-Ground Fault	495
	Case Study 6.10 Undesired Operation of a 13.8-kV Feeder	
	Ground Relay During a Three-Phase Fault Due to an	
	Extra CT Circuit Ground	502

6

CONTENTS

	Case Study 6.11 Correction of a System Model Error	
	from Analysis of a Failure of a Post Insulator Associated	
	with a 115-kV Disconnect Switch	512
	Case Study 6.12 Location of a 345-kV Line Fault Protected	
	by Electromechanical Distance Relays Using Information	
	from a DFR Record	519
	Case Study 6.13 Location of an Outdoor 13.8-kV Switchgear	
	Fault at a Cogeneration Facility Using a DFR Fault	
	Record from a Remote Substation	524
	Case Study 6.14 Breakage (Failure) of a 345-kV Subconductor	
	Bundle During a High-Resistance Tree Fault, Due to the	
	Heavily Loaded Line Sagging to a Tree	529
	Case Study 6.15 115-kV Phase-to-Phase Fault Caused by	
	Failure of a Circuit Switcher	536
	Case Study 6.16 Undesired Tripping of a 115-kV Feeder Due	220
	to a Setting Application Error in the Time Overcurrent	
	Element for a Numerical Line Protection Relay	539
	Case Study 6.17 Mitigation of Mutual Coupling Effects on	337
	the Reach of Ground Distance Relays Protecting High-	
	and Extrahigh-Voltage Transmission Lines	544
	and Eminage Manufacture Emily	5
-		
7		
	FEEDER SYSTEM DISTURBANCES	571
	Case Studies	572
	Case Study 7.1 Optimum Design of Relaying Protection Zones	
	Leads to Quick Identification of a Faulted 345-kV Submarine	
	Cable Section	572
	Case Study 7.2 Undesired Operation of a 138-kV Cable Feeder	5,2
	Differential Relay During the Commissioning Phase of	
	a 500-MW Plant	578
	Case Study 7.3 Phase-to-Ground Fault Caused by Failure	510
	of a 345-kV Cable Connection Between the Generator	
	of a 343-k v Cable Connection Between the Generator	
	and the Switchyard, Accompanied by Mechanical Failure	500
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases	588
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground	
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only	588 595
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only Case Study 7.5 Failure of a 345-kV Cable Connection	
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only Case Study 7.5 Failure of a 345-kV Cable Connection Between a 300-MW Generator and a 345-kV Switchyard,	595
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only Case Study 7.5 Failure of a 345-kV Cable Connection Between a 300-MW Generator and a 345-kV Switchyard, Causing a Phase-to-Ground Fault	
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only Case Study 7.5 Failure of a 345-kV Cable Connection Between a 300-MW Generator and a 345-kV Switchyard, Causing a Phase-to-Ground Fault Case Study 7.6 138-kV Cable Pot Head Failure Analysis	595
	and the Switchyard, Accompanied by Mechanical Failure of One of the Cable Pot Head Phases Case Study 7.4 Troubleshooting a 345-kV Phase-to-Ground Fault Using Relay Targets Only Case Study 7.5 Failure of a 345-kV Cable Connection Between a 300-MW Generator and a 345-kV Switchyard, Causing a Phase-to-Ground Fault	595

XVI CONTENTS

)		TECTION SYSTEM DISTURBANCES	615
	8.1	Breaker Failure Protection Basics	616
		Case Studies	626
		Case Study 8.1 Tripping of a Combined-Cycle 150-MW Plant by Undesired Operation of a Solid-State Breaker Failure	
		Relaying System	626
		Case Study 8.2 115-kV Dual Breaker Failures Resulting in the	(0.1
		Loss of a 1000-MW Plant and Associated Substations	634
		Case Study 8.3 230-kV Substation Outage Due to Circuit	
		Breaker Problems During the Clearing of a Close-in Phase-to-Ground Fault	640
		Case Study 8.4 Failure of a 230-kV Circuit Breaker Leading to	640
		Isolation of a 1000-MW Plant and Associated Substations	646
		Case Study 8.5 Generator CB Failure During Automatic	040
		Synchronization of the Circuit Breaker	654
		Case Study 8.6 Circuit Breaker Re-strikes While Clearing	0.54
		Simultaneous Phase-to-Ground Faults on a 230-kV	
		Double-Circuit Tower	660
		Case Study 8.7 345-kV Capacitor Bank Breaker Fault	
		Coupled with an Additional Failure of a Dual SF6	
		Pressure 345-kV Breaker During the Clearing of the Fault	664
		Case Study 8.8 Oil Circuit Breaker Failure Following the	
		Clearing of a Failed 230-kV Surge Arrester	671
		Case Study 8.9 Detection of a Remote Circuit Breaker	
		Problem from Analysis of a Local Oscillogram	
		Monitoring Line Currents and Voltages	676
		Case Study 8.10 Blackout of a 138-kV Load Area Due to a	
		Primary Relay System Failure and the Lack of DC Control	
		Power for the Secondary Relay System Circuit	678
		Case Study 8.11 Installation of Two 345-kV Breakers in	
		Series Within a Ring Substation Configuration to Mitigate the	ć0 .
		Loss of Critical Lines During Breaker Failure Events	682
		Case Study 8.12 Design of Two 138-kV Circuit Breakers in	600
		Series to Fulfill the Need of Breaker Failure Protection	682
9	PRO	BLEMS	685
n	dex		715