CAMBRIDGE TEXTS IN APPLIED MATHEMATICS ## Iterative Methods in Combinatorial Optimization R. RAVI MOHIT SINGH ## Contents Proface | Pref | îace — — — — — — — — — — — — — — — — — — — | page ix | |--------------|--|---| | Introduction | | 1 | | 1.1 | The assignment problem | 1 | | 1.2 | Iterative algorithm | 3 | | 1.3 | Approach outline | 5 | | 1.4 | Context and applications of iterative rounding | 8 | | 1.5 | Book chapters overview | 8 | | 1.6 | Notes | 10 | | Prel | iminaries | 12 | | 2.1 | Linear programming | 12 | | 2.2 | Graphs and digraphs | 19 | | 2.3 | Submodular and supermodular functions | 21 | | Mat | ching and vertex cover in bipartite graphs | 28 | | 3.1 | Matchings in bipartite graphs | 28 | | 3.2 | Generalized assignment problem | 32 | | 3.3 | Maximum budgeted allocation | 35 | | 3.4 | Vertex cover in bipartite graphs | 40 | | 3.5 | Vertex cover and matching: duality | 43 | | 3.6 | Notes | 44 | | Spar | nning trees | 46 | | 4.1 | Minimum spanning trees | 46 | | 4.2 | Iterative 1-edge-finding algorithm | . 54 | | 4.3 | Minimum bounded-degree spanning trees | 57 | | 4.4 | An additive one approximation algorithm | 60 | | 4.5 | Notes | 62 | | | Intr 1.1 1.2 1.3 1.4 1.5 1.6 Prel 2.1 2.2 2.3 Mat 3.1 3.2 3.3 3.4 3.5 3.6 Span 4.1 4.2 4.3 4.4 | 1.1 The assignment problem 1.2 Iterative algorithm 1.3 Approach outline 1.4 Context and applications of iterative rounding 1.5 Book chapters overview 1.6 Notes Preliminaries 2.1 Linear programming 2.2 Graphs and digraphs 2.3 Submodular and supermodular functions Matching and vertex cover in bipartite graphs 3.1 Matchings in bipartite graphs 3.2 Generalized assignment problem 3.3 Maximum budgeted allocation 3.4 Vertex cover in bipartite graphs 3.5 Vertex cover and matching: duality 3.6 Notes Spanning trees 4.1 Minimum spanning trees 4.2 Iterative 1-edge-finding algorithm 4.3 Minimum bounded-degree spanning trees 4.4 An additive one approximation algorithm | 10.5 Notes | 5 | Matr | roids | 65 | |----|--------------------------------------|--|-----| | | 5.1 | Preliminaries | 65 | | | 5.2 | Maximum weight basis | 67 | | | 5.3 | Matroid intersection | 71 | | | 5.4 | Duality and min-max theorem | 74 | | | 5.5 | Minimum bounded degree matroid basis | 77 | | | 5.6 | k matroid intersection | 82 | | | 5.7 | Notes | 85 | | 6 | Arborescence and rooted connectivity | | 88 | | | 6.1 | Minimum cost arborescence | 89 | | | 6.2 | Minimum cost rooted k-connected subgraphs | 95 | | | 6.3 | Minimum bounded degree arborescence | 101 | | | 6.4 | Additive performance guarantee | 106 | | | 6.5 | Notes | 108 | | 7 | Submodular flows and applications | | 110 | | | 7.1 | The model and the main result | 110 | | | 7.2 | Primal integrality | 112 | | | 7.3 | Dual integrality | 116 | | | 7.4 | Applications of submodular flows | 117 | | | 7.5 | Minimum bounded degree submodular flows | 124 | | | 7.6 | Notes | 128 | | 8 | Network matrices | | 131 | | | 8.1 | The model and main results | 131 | | | 8.2 | Primal integrality | 133 | | | 8.3 | Dual integrality | 136 | | | 8.4 | Applications | 139 | | | 8.5 | Notes | 143 | | 9 | Matchings | | 145 | | | 9.1 | Graph matching | 145 | | | 9.2 | Hypergraph matching | 155 | | | 9.3 | Notes | 160 | | 10 | Network design | | 164 | | | | Survivable network design problem | 164 | | | 10.2 | Connection to the traveling salesman problem | 168 | | | 10.3 | Minimum bounded degree Steiner networks | 172 | | | 10.4 | An additive approximation algorithm | 175 | 179 | C_{\sim} | ntant. | | |------------|--------|--| | | ntents | | vii | 11 | Constrained optimization problems | 182 | |----|---|-----| | 11 | 11.1 Vertex cover | 182 | | | 11.2 Partial vertex cover | 184 | | | 11.3 Multicriteria spanning trees | 187 | | | 11.4 Notes | 189 | | 12 | Cut problems | 191 | | | 12.1 Triangle cover | 191 | | | 12.2 Feedback vertex set on bipartite tournaments | 194 | | | 12.3 Node multiway cut | 197 | | | 12.4 Notes | 200 | | 13 | Iterative relaxation: Early and recent examples | 203 | | | 13.1 A discrepancy theorem | 203 | | | 13.2 Rearrangments of sums | 206 | | | 13.3 Minimum cost circulation | 208 | | | 13.4 Minimum cost unsplittable flow | 210 | | | 13.5 Bin packing | 212 | | | 13.6 Iterative randomized rounding: Steiner trees | 220 | | | 13.7 Notes | 228 | | 14 | Summary | 231 | | | Bibliography | 233 | | | Index | 241 | | | IIMUA | ∠+1 |