POROUS MEDIA TRANSPORT PHENOMENA

FARUK CIVAN

CONTENTS

PREF	ACE		xv
ABOU	T THE	AUTHOR	xix
СНАРТ	NED 1	OVERVIEW	1
			
1.1		luction C	1
1.2	Synop	oses of Topics Covered in Various Chapters	3
CHAP	TER 2	TRANSPORT PROPERTIES OF POROUS MEDIA	7
2.1	Introd	luction	7
2.2	Perme	eability of Porous Media Based on the Bundle of Tortuous	
	Leaky	y-Tube Model	10
	2.2.1	Pore Structure	11
	2.2.2	Equation of Permeability	13
	2.2.3	Derivation of the Equation of Permeability	16
	2.2.4	Pore Connectivity and Parametric Functions	20
	2.2.5	Data Analysis and Correlation Method	24
	2.2.6	Parametric Relationships of Typical Data	26
		2.2.6.1 Example 1: Synthetic Spheres	26
		2.2.6.2 Example 2: Dolomite	26
		2.2.6.3 Example 3: Berea Sandstone	27
	2.2.7	Correlation of Typical Permeability Data	29
		2.2.7.1 Example 4: Synthetic Porous Media	29
		2.2.7.2 Example 5: Glass Bead and Sand Packs	31
		2.2.7.3 Example 6: Silty Soil	33
2.3	Perme	eability of Porous Media Undergoing Alteration by Scale Deposition	. 33
	2.3.1	Permeability Alteration by Scale Deposition	36
	2.3.2	Permeability Alteration in Thin Porous Disk by Scale Deposition	37
	2.3.3	Data Analysis and Correlation Method	38
	2.3.4	Correlation of Scale Effect on Permeability	39
		2.3.4.1 Example 7: Scale Formation	39
		2.3.4.2 Example 8: Acid Dissolution	40
		2.3.4.3 Example 9: Wormhole Development	42
2.4	Temp	erature Effect on Permeability	44
	2.4.1	The Modified Kozeny–Carman Equation	46
	2.4.2	The Vogel-Tammann-Fulcher (VTF) Equation	49
	2.4.3	Data Analysis and Correlation	51
		2.4.3.1 Example 10: Correlation Using the Modified	
		Kozeny-Carman Equation	51
		2.4.3.2 Example 11: Correlation Using the VTF Equation	52

viii CONTENTS

2.5	Effects of Other Factors on Permeability	54
2.6	Exercises	54
СНАРТ	ER 3 MACROSCOPIC TRANSPORT EQUATIONS	57
3.1	Introduction	57
3.2	REV	58
3.3	Volume-Averaging Rules	59
3.4	Mass-Weighted Volume-Averaging Rule	67
3.5	Surface Area Averaging Rules	68
3.6	Applications of Volume and Surface Averaging Rules	68
3.7	Double Decomposition for Turbulent Processes in Porous Media	70
3.8	Tortuosity Effect	73
3.9	Macroscopic Transport Equations by Control Volume Analysis	74
3.10	Generalized Volume-Averaged Transport Equations	76
3.11	Exercises	76
СНАРТ		
IN PO	ROUS MEDIA	79
4.1	Introduction	79
4.2	Dimensional and Inspectional Analysis Methods	81
	4.2.1 Dimensional Analysis	81
	4.2.2 Inspectional Analysis	82
4.3	Scaling	84
	4.3.1 Scaling as a Tool for Convenient Representation	84
	4.3.2 Scaling as a Tool for Minimum Parametric Representation	84
	4.3.3 Normalized Variables	86
	4.3.4 Scaling Criteria and Options for Porous Media Processes	87
	4.3.5 Scaling Immiscible Fluid Displacement in Laboratory	
	Core Floods	89
4.4	Exercises	92
СНАРТ	ER 5 FLUID MOTION IN POROUS MEDIA	97
5.1	Introduction	97
5.2	Flow Potential	98
5.3	Modification of Darcy's Law for Bulk- versus Fluid Volume	
	Average Pressures	99
5.4	Macroscopic Equation of Motion from the Control Volume Approach	
	and Dimensional Analysis	102
5.5	Modification of Darcy's Law for the Threshold Pressure Gradient	105
5.6	Convenient Formulations of the Forchheimer Equation	108
5.7	Determination of the Parameters of the Forchheimer Equation	111
5.8	Flow Demarcation Criteria	115
5.9	Entropy Generation in Porous Media	117
	5.9.1 Flow through a Hydraulic Tube	118
	5.9.2 Flow through Porous Media	120
5.10	Viscous Dissipation in Porous Media	123
5.11	Generalized Darcy's Law by Control Volume Analysis	124
	5.11.1 General Formulation	126
	5.11.2 Simplified Equations of Motion for Porous Media Flow	132

	COM	NTENTS	ŧΧ
5.12	Equation of Motion for Non-Newtonian Fluids		134
	5.12.1 Frictional Drag for Non-Newtonian Fluids		134
	5.12.2 Modified Darcy's Law for Non-Newtonian Fluids		135
	5.12.3 Modified Forchheimer Equation for Non-Newtonian Fluids		137
5.13	Exercises		138
CHAPT!	ER 6 GAS TRANSPORT IN TIGHT POROUS MEDIA		145
6.1	Introduction		145
6.2	Gas Flow through a Capillary Hydraulic Tube		146
6.3	Relationship between Transports Expressed on Different Bases		147
6.4	The Mean Free Path of Molecules: FHS versus VHS		149
6.5	The Knudsen Number		150
6.6	Flow Regimes and Gas Transport at Isothermal Conditions		152
	6.6.1 Knudsen Regime		154
	6.6.2 Slip/Transition Regime		156
	6.6.3 Viscous Regime		157
	6.6.4 Adsorbed-Phase Diffusion		158
	6.6.5 Liquid Viscous or Capillary Condensate Flow		159
6.7	Gas Transport at Nonisothermal Conditions		159
6.8	Unified Hagen-Poiseuille-Type Equation for Apparent Gas Permeability		160 161
	6.8.1 The Rarefaction Coefficient Correlation 6.8.2 The Apparent Gas Permeability Equation		162
	6.8.2 The Apparent Gas Permeability Equation6.8.3 The Klinkenberg Gas Slippage Factor Correlation		163
6.9	Single-Component Gas Flow		165
6.10	Multicomponent Gas Flow		166
6.11	Effect of Different Flow Regimes in a Capillary Flow Path		100
().11	and the Extended Klinkenberg Equation		168
6.12			170
6.13	Exercises		174
CHAPT	· · · · · · · · · · · · · · · · · · ·		177
7.1	Introduction		177
7.2	Coupling Single-Phase Mass and Momentum Balance Equations		178
7.3	Cylindrical Leaky-Tank Reservoir Model Including		
	the Non-Darcy Effect		179
7.4	Coupling Two-Phase Mass and Momentum Balance Equations		107
	for Immiscible Displacement		186
	7.4.1 Macroscopic Equation of Continuity		186
	7.4.2 Application to Oil/Water Systems		187
	7.4.2.1 Pressure and Saturation Formulation 7.4.2.2 Saturation Formulation		188 189
	· · · · · · · · · · · · · · · · · · ·		190
	7.4.2.3 Boundary Conditions		190
	7.4.3 One-Dimensional Linear Displacement 7.4.4 Numerical Solution of Incompressible Two Phase Fluid		190
	7.4.4 Numerical Solution of Incompressible Two-Phase Fluid Displacement Including the Capillary Pressure Effect		191
	7.4.5 Fractional Flow Formulation		191
	7.4.5 The Buckley–Leverett Analytic Solution Neglecting		172
	the Capillary Pressure Effect		193
	7.4.7 Convenient Formulation		194
	7.1.7 CONVENIENCE OFFICIALITY		.,,,

X CONTENTS

	7.4.8	Unit End-Point Mobility Ratio Formulation	195
		7.4.8.1 Example 1	196
		7.4.8.2 Example 2	198
7.5	Potentia	al Flow Problems in Porous Media	200
	7.5.1	Principle of Superposition	200
	7.5.2	Principle of Imaging	202
	7.5.3	Basic Method of Images	202
	7.5.4	Expanded Method of Images	205
7.6	Stream	line/Stream Tube Formulation and Front Tracking	205
	7.6.1	Basic Formulation	206
	7.6.2	Finite Analytic Representation of Wells in Porous Media	211
	7.6.3	Streamline Formulation of Immiscible Displacement	
		in Unconfined Reservoirs	213
	7.6.4	Streamline Formulation of Immiscible Displacement	
		Neglecting Capillary Pressure Effects in Confined Reservoirs	214
7.7	Exercis	ees	218
	_		227
CHAP	TER 8 P	ARAMETERS OF FLUID TRANSFER IN POROUS MEDIA	227
8.1	Introdu		227
8.2	Wettab	ility and Wettability Index	230
8.3	Capilla	ry Pressure	231
8.4		of Fluid Displacement	234
8.5		rature Effect on Wettability-Related Properties of Porous Media	235
8.6	Direct 1	Methods for the Determination of Porous Media Flow Functions	
		rameters	238
	8.6.1	Direct Interpretation Methods for the Unsteady-State	
		Core Tests	238
		8.6.1.1 Basic Relationships	238
		8.6.1.2 Solution Neglecting the Capillary End Effect	
		for Constant Fluid Properties	242
		8.6.1.3 Inferring Function and Function Derivative	
		Values from Average Function Values	245
		8.6.1.4 Relationships for Processing Experimental Data	247
		8.6.1.5 Applications	251
	8.6.2	Tóth et al. Formulae for the Direct Determination of Relative	
		Permeability from Unsteady-State Fluid Displacements	-251
		8.6.2.1 Determination of Relative Permeability under	
		Variable Pressure and Rate Conditions	253
		8.6.2.2 Determination of Relative Permeability under	
		Constant Pressure Conditions	256
		8.6.2.3 Determination of Relative Permeability under	2.55
		Constant Rate Conditions	257
		8.6.2.4 Applications for Data Analysis	257
8.7		t Methods for the Determination of Porous Media	250
		Functions and Parameters	259
	8.7.1	Indirect Method for Interpretation of the Steady-State Core Tests	260
	8.7.2	Unsteady-State Core Test History Matching Method	
		for the Unique and Simultaneous Determination	261
		of Relative Permeability and Capillary Pressure	261

				CONTENTS	хi
		8.7.2.1	Formulation of a Two-Phase Flow in Porous Medi	ia	261
		8.7.2.2	Representation of Flow Functions		263
		8.7.2.3	Parameter Estimation Using the Simulated		-00
		0111213	Annealing Method		265
		8.7.2.4	-		267
		8.7.2.5	Applications for Imbibition Tests		269
8.8	Exercis				276
СНАРТ	ER9 M	ASS. MO	MENTUM, AND ENERGY TRANSPORT		
IN PO	ROUS M				281
9.1	Introdu	ction			281
9.2			port of Species in Heterogeneous and Anisotropic		201
7.2	Porous		port of openies in freierogeneous and Amsorropic		282
	9.2.1		lar Diffusion		283
			ynamic Dispersion		283
	9.2.3		ve/Convective Flux of Species		285
	9.2.4		tion of Dispersivity and Dispersion		286
9.3			ase Fully Compositional Nonisothermal		200
7.5		Model	use I unly Compositional Promsomermal		288
9.4			Source/Sink Terms in Conservation Equations		292
9.5			Coll Model of a Nonvolatile Oil System		295
9.6			ted Compositional Model of a Volatile Oil System		298
9.7			Vaporizing Water Phases in the		270
7.1		ellbore R			299
9.8			sate and Gas Phase Containing Noncondensable		
7.0			he Near-Wellbore Region		301
9.9			Formulations		305
7.7	9.9.1		ess-Averaged Formulation		305
	9.9.2		ectional Area-Averaged Formulation		306
9.10			t Transfer with Phase Change		307
,,,,	9.10.1		en Water in Freezing and Thawing Soils:		50,
	<i>></i> 0		s and Correlation		309
	9.10.2		s of Freezing/Thawing Phase Change		20,
	7.10.2		relation Method		311
	9.10.3		entation of the Unfrozen Water Content		٠
	J.10.3		antaneous Phase Change		317
	9.10.4		nt Heat Capacity Formulation for Heat Transfer		21,
	J.10.1		ase Change		318
	9 10 5		y Formulation of Conduction Heat Transfer		510
	7.10.5		ase Change at a Fixed Temperature		322
	9.10.6		l Regimes for Freezing and Thawing of Moist Soils	<u>.</u> -	,,,,,
	7.10.0		I versus Fixed Temperature Phase Change	,.	326
9.11	Simult		hase Transition and Transport in Porous Media		520
J.111			Hydrates		328
9.12		_	othermal Hydrocarbon Fluid Flow Considering		24-0
J.14			pression and Joule–Thomson Effects		338
	9.12.1		Considerations and Assumptions		339
	9.12.2		ature and Pressure Dependency of Properties		339
	9.12.3		e Properties		341
	>		· i i opinio		~ 11

XII CONTENTS

	9.12.4	Equations of Conservations	342
	9.12.5	Applications	345
9.13	Exercis	es	346
CHAPT	ER 10 S	SUSPENDED PARTICULATE TRANSPORT IN POROUS MEDIA	353
10.1	Introdu	ction	353
10.2	Deep-B	ed Filtration under Nonisothermal Conditions	355
	10.2.1	Concentration of Fine Particles Migrating within the Carrier Fluid	356
	10.2.2		
		of the Porous Matrix	359
	10.2.3	Variation of Temperature in the System of Porous Matrix	
		and Flowing Fluid	359
	10.2.4	Initial Filter Coefficient	361
	10.2.5	Filter Coefficient Dependence on Particle Retention Mechanisms	
		and Temperature Variation	363
	10.2.6	Permeability Alteration by Particle Retention	
		and Thermal Deformation	365
	10.2.7	Applications	366
10.3		iltration over an Effective Filter	370
10.4	Exercis	es	379
СНАРТ	ER 11 7	FRANSPORT IN HETEROGENEOUS POROUS MEDIA	383
11.1	Introdu	ction	383
11.2	Transpo	ort Units and Transport in Heterogeneous Porous Media	385
	11.2.1	Transport Units	385
	11.2.2	Sugar Cube Model of Naturally Fractured Porous Media	386
11.3	Models	for Transport in Fissured/Fractured Porous Media	388
	11.3.1	Analytical Matrix-Fracture Interchange Transfer Functions	388
	11.3.2	Pseudo-Steady-State Condition and Constant Fracture Fluid	
		Pressure over the Matrix Block: The Warren-Root	
		Lump-Parameter Model	390
	11.3.3	Transient-State Condition and Constant Fracture	
		Fluid Pressure over the Matrix Block	391
	11.3.4	Single-Phase Transient Pressure Model of de Swaan for	
		Naturally Fractured Reservoirs	392
11.4	-	Transport in Fractured Porous Media	394
11.5	Immise	ible Displacement in Naturally Fractured Porous Media	396
	11.5.1		397
	11.5.2		402
	11.5.3	Exact Analytical Solution Using the Unit End-Point	
		Mobility Approximation	404
	11.5.4	Asymptotic Analytical Solutions Using the Unit End-Point	
		Mobility Approximation	405
		11.5.4.1 Formulation	406
		11.5.4.2 Small-Time Approximation	407
11.7	kar at in	11.5.4.3 Approximation for Large Time	408
11.6		of Weighted Sum (Quadrature) Numerical Solutions	410
	11.6.1	Formulation	411
	11.6.2	Quadrature Solution	413

11.8	Exercises	425
	11.7.2 Numerical Solutions	418
	11.7.1 Formulation	416
11.7	Finite Difference Numerical Solution	415

INDEX

CONTENTS XIII