Green Chemistry An Introductory Text

Mike Lancaster

RSCPublishing

Contents

Chapter 1	Principles and Concepts of Green Chemistry	
	1.1 Introduction	1
	1.2 Sustainable Development and Green Chemistry	3
	1.2.1 Green Engineering	4
	1.3 Atom Economy	7
	1.4 Atom Economic Reactions	9
	1.4.1 Rearrangement Reactions	9
	1.4.2 Addition Reactions	11
	1.5 Atom Un-economic Reactions	13
	1.5.1 Substitution Reactions	13
	1.5.2 Elimination Reactions	15
	1.5.3 Wittig Reactions	16
	1.6 Reducing Toxicity	17
	1.6.1 Measuring Toxicity	19
	Review Questions	21
	Further Reading	22
Chapter 2	Waste: Production, Problems, and Prevention	23
	2.1 Introduction	23
	2.2 Some Problems Caused by Waste	25
	2.3 Sources of Waste from the Chemical Industry	26
	2.4 Cost of Waste	29
	2.5 Waste Minimization Techniques	33
	2.5.1 The Team Approach to Waste Minimization	34
	2.5.2 Process Design for Waste Minimization	36
	2.5.3 Minimizing Waste from Existing Processes	38

Green Chemistry: An Introductory Text, 2nd Edition

Published by the Royal Society of Chemistry, www.rsc.org

By Mike Lancaster

[©] Mike Lancaster 2010

xii Contents

	2.6	On-site Waste Treatment	39
		2.6.1 Physical Treatment	41
		2.6.2 Chemical Treatment	42
		2.6.3 Biotreatment Plants	46
	2.7	Design for Degradation	47
		2.7.1 Degradation and Surfactants	48
		2.7.2 DDT	49
		2.7.3 Polymers	50
		2.7.4 Some Rules for Degradation	51
	2.8	Polymer Recycling	52
		2.8.1 Separation and Sorting	53
		2.8.2 Incineration	55
		2.8.3 Mechanical Recycling	56
		2.8.4 Chemical Recycling to Monomers	57
	Rev	iew Questions	60
	Fur	ther Reading	60
Chapter 3	Mea	asuring and Controlling Environmental Performance	61
	3.1	The Importance of Measurement	61
		3.1.1 Lactic Acid Production	62
		3.1.2 Safer Gasoline	65
	3.2	Introduction to Life Cycle Assessment	66
		3.2.1 Four Stages of LCA	68
		3.2.2 Carbon Footprinting	72
	3.3	Green Process Metrics	74
	3.4	Environmental Management Systems (EMS)	77
		3.4.1 ISO 14001	77
		3.4.2 The European Eco-Management and Audit	
		Scheme (EMAS)	81
	3.5	Eco-Labels	82
	3.6	Legislation	83
		3.6.1 Integrated Pollution Prevention and Control (IPPC)	84
		3.6.2 REACH	87
	Rev	riew Questions	88
		ther Reading	89
Chapter 4	Cat	alysis and Green Chemistry	90
	4.1	Introduction to Catalysis	90
		4.1.1 Comparison of Catalyst Types	92
	4.2	Heterogeneous Catalysts	94
		4.2.1 Basics of Heterogeneous Catalysis	94
		122 Zeolites and the Rulk Chemical Industry	07

Contents xiii

		4.2.3 Heterogeneous Catalysis in the Fine Chemical	
		and Pharmaceutical Industries	105
		4.2.4 Catalytic Converters	114
	4.3	Homogeneous Catalysts	117
		4.3.1 Transition Metal Catalysts with Phosphine or	
		Carbonyl Ligands	117
		4.3.2 Greener Lewis Acids	121
		4.3.3 Asymmetric Catalysis	122
	4.4	Phase Transfer Catalysis	128
		4.4.1 Hazard Reduction	129
		4.4.2 C–C Bond Formation	130
		4.4.3 Oxidation using Hydrogen Peroxide	131
	4.5	Biocatalysis	132
	4.6	Photocatalysis	135
	4.7	Conclusions	137
	Rev	view Questions	137
	Fur	ther Reading	138
Chapter 5	Org	ganic Solvents: Environmentally Benign Solutions	139
	5.1	Organic Solvents and Volatile Organic Compounds	139
	5.2		141
	5.3	Supercritical Fluids	144
		5.3.1 Supercritical Carbon Dioxide (scCO ₂)	146
		5.3.2 Supercritical Water	156
	5.4	Water as a Reaction Solvent	157
		5.4.1 Water Based Coatings	162
	5.5	Ionic Liquids	163
		5.5.1 Ionic Liquids as Catalysts	165
		5.5.2 Ionic Liquids as Solvents	166
	5.6		170
	5.7	*	172
	5.8	Conclusions	173
	Rev	riew Questions	174
		ther Reading	174
Chapter 6	Ren	newable Resources	175
	6.1	Biomass as a Renewable Resource	175
	6.2	Energy	175
		6.2.1 Fossil Fuels	175
		6.2.2 Energy from Biomass	179
		6.2.3 Solar Power	186
		6.2.4 Other Forms of Renewable Energy	188
		6.2.5 Fuel Cells	189

6.3 Chemicals from Renewable Feedstocks
6.3.1 Chemicals from Fatty Acids

Contents

194

		6.3.1 Chemicals from Fatty Acids6.3.2 Polymers from Renewable Resources	196 204
		6.3.3 Some Other Chemicals from Natural	204
		Resources	210
	6.4	Alternative Economies	215
	0.4	6.4.1 Syngas Economy	216
		, ,	217
	6.5	6.4.2 Hydrogen Economy	217
	6.5	Biorefinery Conclusions	219
	6.6		219
		iew Questions ther Reading	220
Chanton 7	Ema	arging Creener Technologies and Alternative Energy	
Chapter 7	Sour	orging Greener Technologies and Alternative Energy rces	221
	7.1	Design for Energy Efficiency	221
	7.2	Photochemical Reactions	224
		7.2.1 Advantages of and Challenges Faced by	
		Photochemical Processes	225
		7.2.2 Examples of Photochemical Reactions	227
	7.3	Chemistry using Microwaves	231
		7.3.1 Microwave Heating	231
		7.3.2 Microwave-assisted Reactions	232
	7.4	Sonochemistry	236
		7.4.1 Sonochemistry and Green Chemistry	237
	7.5	Electrochemical Synthesis	239
		7.5.1 Examples of Electrochemical Synthesis	241
	7.6	Conclusions	244
	Rev	iew Questions	244
	Fur	ther Reading	245
Chapter 8	Desi	igning Greener Processes	246
	8.1	Introduction	246
	8.2	Conventional Reactors	247
		8.2.1 Batch Reactors	247
		8.2.2 Continuous Reactors	250
	8.3	Inherently Safer Design	252
		8.3.1 Minimization	254
		8.3.2 Simplification	255
		8.3.3 Substitution	255
		8.3.4 Moderation	256
		8.3.5 Limitation	257
	8.4	Process Intensification	258

Contents xv

	8.4.1 Some PI Equipment	260
	8.4.2 Some Example of Intensified Processes	263
	8.5 In-process Monitoring	266
	8.5.1 Near-infrared Spectroscopy	268
	8.6 Process Safety	269
	Review Questions	270
	Further Reading	270
Chapter 9	Industrial Case Studies	271
	9.1 Introduction	271
	9.2 Methyl Methacrylate	271
	9.3 Greening of Acetic Acid Manufacture	273
	9.4 EPDM Rubbers	277
	9.5 Vitamin C	280
	9.6 Leather Manufacture	282
	9.6.1 Tanning	284
	9.6.2 Fatliquoring	288
	9.7 Dyeing to be Green	288
	9.7.1 Some Manufacturing Improvements	289
	9.7.2 Dye Application	292
	9.8 Polyethylene	293
	9.8.1 Radical Process	293
	9.8.2 Ziegler–Natta Catalysis	294
	9.8.3 Metallocene Catalysis	295
	9.8.4 Post Metallocene Catalysts	297
	9.9 Eco-friendly Pesticides	298
	9.9.1 Insecticides	298
	9.10 Epichlorohydrin	301
	Review Questions	302
Chapter 10		20.4
	Chemical Industry	304
	10.1 Society and Sustainability	304
	10.2 Barriers & Drivers	305
	10.3 Role of Legislation	307
	10.4 Green Chemical Supply Strategies	309
	10.5 Greener Energy	311
	10.6 Conclusions	312
	Review Questions	312
	Further Reading	313
Subject Ind	lex	314