INTELLIGENT

TRANSPORTATION

SYSTEMS

Autonomous
Ground
Vehicles

Ümit Özgüner Tankut Acarman Keith Redmill

Contents

Preta	ace		IX
CHA	Pilari		
Intro	duction	n	1
1.1	Backg	round in Autonomy in Cars	1
1.2	Comp	onents of Autonomy	2
	1.2.1	Sensors	2 2 3 3
	1.2.2	Actuators	2
	1.2.3	Communication	3
		Intelligence	
1.3	Notes	on Historical Development	3
	1.3.1	Research and Experiments on Autonomous Vehicles	3
	1.3.2	Autonomous Driving Demonstrations	5
	1.3.3	Recent Appearances in the Market	8
1.4	Conte	nts of This Book	10
		References	11
CHA	PHER		
The	Role of	Control in Autonomous Systems	13
2.1	Feedb	ack	13
	2.1.1	Speed Control Using Point Mass and Force Input	13
	2.1.2	Stopping	15
	2.1.3	Swerving	17
2.2	A Firs	t Look at Autonomous Control	18
	2.2.1	Car Following and Advanced Cruise Control	18
	2.2.2	Steering Control Using Point Mass Model: Open-Loop Commands	22
	2.2.3	Steering Control Using Point Mass Model: Closed-Loop Commands	28
	2.2.4	Polynomial Tracking	32
	2.2.5	Continuous and Smooth Trajectory Establishment	33
	2.2.6	The Need for Command Sequencing	34
		References	35

<u>vi</u> _____ Contents

~ L A	PTER		
		itecture and Hybrid System Modeling	37
-			37
3.1	3.1.1	n Architecture Architectures Within Autonomous Vehicles	37 37
	3.1.2	Task Hierarchies for Autonomous Vehicles	37
3.2		d System Formulation	43
9.2	•	Discrete Event Systems, Finite State Machines, and Hybrid Systems	43
		Another Look at ACC	44
		Application to Obstacle Avoidance	45
	3.2.4	Another Example: Two Buses in a Single Lane	49
3.3		Machines for Different Challenge Events	55
	3.3.1	Macrostates: Highway, City, and Off-Road Driving	55
		The Demo '97 State Machine	57
		Grand Challenge 2 State Machine	61
	3.3.4	The Urban Challenge State Machine	64
		References	67
CHA	NPTER 2		
		imation, and Sensor Fusion	69
	•		
		r Characteristics	69 70
4.2		e Internal State Sensing	70
		OEM Vehicle Sensors	70
		Global Positioning System (GPS) Inertial Measurements	80
		Magnetic Compass (Magnetometer)	81
4.3		nal World Sensing	84
т.Э		Radar	85
		LIDAR	86
		Image Processing Sensors	88
		Cooperative Infrastructure Technologies	93
4.4	Estim		95
	4.4.1	An Introduction to the Kalman Filter	95
		Example	97
	4.4.3	Another Example of Kalman Filters: Vehicle Tracking for	
		Avoidance	99
4.5	Senso	r Fusion	101
	4.5.1	Vehicle Localization (Position and Orientation)	101
	4.5.2	External Environment Sensing	103
	4.5.3	Occupancy Maps and an Off-Road Vehicle	106
	4.5.4	Cluster Tracking and an On-Road Urban Vehicle	117
4.6	Situat	ional Awareness	133
	4.6.1	Structure of a Situation Analysis Module	134
	4.6.2	Road and Lane Model Generation	136
	4.6.3	Intersection Generation	140

141

4.6.4

Primitives

Contents	 			

vii

	4.6.5 Track Classifica	ution	143	
	4.6.6 Sample Results		147	
	References		147	
CH/	APTER 5			
Exa	mples of Autonomy		149	
5.1	Cruise Control		149	
	5.1.1 Background		150	
	5.1.2 Speed Control	with an Engine Model	151	
	5.1.3 More Complex	·	158	
5.2	Antilock-Brake Syster	ns	161	
	5.2.1 Background		161	
	5.2.2 Slip		162	
5.3	5.2.3 An ABS System		165	
5.3	Steering Control and	Lane Following	167	
	5.3.1 Background	s1	167 167	
	5.3.2 Steering Control5.3.3 Lane Following	:	178	
5.4	Parking	•	182	
J.T	5.4.1 Local Coordina	ntes	183	
		ios: General Parking Scenario and DARPA	103	
	•	nomous Vehicle Parking Scenario	184	
	•	Experimental Results	190	
	References	•	191	
CH	APTER 6			
Ma	os and Path Planning		193	
6.1	Map Databases		193	
	6.1.1 Raster Map Da	ıta	194	
	6.1.2 Vector Map Da		195	
	6.1.3 Utilizing the M	ap Data	196	
6.2	Path Planning		198	
	6.2.1 Path Planning i	n an Off-Road Environment	199	
		Grid-Based Path Planning Algorithm	201	
		d Path Planning Approaches	204	
		ath Planning Algorithm	206	
	References	1	215	
CH	APTER 7			
Veh	icle-to-Vehicle and Veh	icle-to-Infrastructure Communication	217	
7.1	Introduction		217	
7.2	Vehicle-to-Vehicle Communication (V2V)			
7.3	Vehicle-to-Infrastruct	ure Communication (V2I)	223	
7.4	Communication Tech	•	224	
		Communication Through Broadcast Radio	224	
	7.4.2 Cellular/Broad	band	224	

	7.4.3 Information Showers	224
	7.4.4 Narrowband Licensed 220 MHz	224
	7.4.5 Dedicated Short-Range Communication (DSRC)	225
7.5	802.11p/WAVE DSRC Architecture and U.S./EU Standards	225
	7.5.1 802.11P Physical Layer	227
	7.5.2 1609.4 Channelization Overview	228
	7.5.3 1609.3 Network Management	230
	7.5.4 EU Programs and Standards Activity	231
7.6	Potential Applications in an Autonomous Vehicle	232
	7.6.1 Platoons and Adaptive Cruise Control (ACC)	233
	7.6.2 Merging Traffic	238
	7.6.3 Urban Driving with Stop-and-Go Traffic	241
	References	244
	Selected Bibliography	245
CHA	APTER 8	
Con	nclusions	247
8.1	Some Related Problems	247
	8.1.1 Fault Tolerance	247
	8.1.2 Driver Modeling	249
8.2	And the Beat Goes On	251
	References	255
App	pendix	257
A. 1	Two-Wheel Vehicle (Bicycle) Model	257
A.2	Full Vehicle Model Without Engine Dynamics	260
	A.2.1 Lateral, Longitudinal, and Yaw Dynamics	260
	A.2.2 Suspension Forces and Tire Dynamics	263
	A.2.3 Tire Forces	264
۸ho	out the Authors	269
Inde	ex	271