List o	f contributors	page x
Prefa	ce	xiii
Ackn	Acknowledgements	
List o	f acronyms and abbreviations	XV
	Landscape and landscape-scale processes as the	
•	unfilled niche in the global environmental change	
	debate: an introduction	1
	OLAV SLAYMAKER, THOMAS SPENCER AND	•
	SIMON DADSON	
1 1	The context	1
	Climatic geomorphology	4
	Process geomorphology	5
	Identification of disturbance regimes	6
1.5	Landscape change	8
1.6	Systemic drivers of global environmental change (I): hydroclimate and	
	runoff	10
	Systemic drivers of global environmental change (II): sea level	14
1.8	Cumulative drivers of global environmental change (I): topographic	
	relief	17
1.9	Cumulative drivers of global environmental change (II): human	10
	activity	19
1.10	Broader issues for geomorphology in the global environmental change	22
1 11	debate	25
	Landscape change models in geomorphology	28
1.12	Organisation of the book	20
2	Mountains	37
_	OLAV SLAYMAKER AND CHRISTINE EMBLETON-HAMANN	5,
2.1	Introduction	37
	Direct driver I: relief	42
	Direct driver II: hydroclimate and runoff	44
	Direct driver III: human activity, population and land use	45
	Twenty-first-century mountain landscapes under the influence of	
	hydroclimate change	49

2.6	Twenty-first-century mountain landscapes under the influence of land	
	use and land cover change	55
2.7	Vulnerability of mountain landscapes and relation to adaptive	
	capacity	61
3	Lakes and lake catchments	71
•	KENII KASHIWAYA, OLAV SLAYMAKER AND MICHAEL	, 1
	CHURCH	
2.1	Introduction	71
		71
	Lakes and wetlands	72
	The lake catchment as geomorphic system	74
	Internal lake processes	78
	Hydroclimate changes and proxy data	80
	Effects of human activity	86
3.7	Scenarios of future wetland and lake catchment change	92
4	Rivers	0.0
7		98
	MICHAEL CHURCH, TIM P. BURT, VICTOR J. GALAY AND	
	G. MATHIAS KONDOLF	
	Introduction	98
	Land surface: runoff production	98
4.3	River channels: function and management	103
4.4	Fluvial sediment transport and sedimentation	109
4.5	Water control: dams and diversions	114
4.6	River restoration in the context of global change	121
4.7	Conclusions	125
	Estruction accept the such as Aidel flats and accept	
3	Estuaries, coastal marshes, tidal flats and coastal	
	dunes	130
	DENISE J. REED, ROBIN DAVIDSON-ARNOTT AND GERARDO	
	M. E. PERILLO	
5.1	Introduction	130
5.2	Estuaries	133
5.3	Coastal marshes and tidal flats	136
5.4	Coastal sand dune systems	142
5.5	Managing coastal geomorphic systems for the	
	twenty-first century	150
6	Beaches, cliffs and deltas	158
	MARCEL J. F. STIVE, PETER J. COWELL AND ROBERT	
	J. NICHOLLS	
6.1	Introduction	158
6.2	Coastal classification	159
6.3	The coastal-tract cascade	162
6.4	Applications of the quantitative coastal tract	167
	Risk-based prediction and adaptation	174
	Conclusions	176

7	Coral reefs	180
	PAUL KENCH, CHRIS PERRY AND THOMAS SPENCER	
7.1	Introduction	180
7.2	Carbonate production in coral reef environments: the reef carbonate	
	factory	182
7.3	Coral reef landforms: reef and reef flat geomorphology	188
7.4	Reef sedimentary landforms	195
7.5	Anthropogenic effects on sedimentary landforms	202
7.6	Synthesis	205
8	Tropical rainforests	214
	rory p. d. walsh and will h. blake	
	The tropical rainforest ecological and morphoclimatic zone	214
8.2	Geomorphological characteristics of the rainforest zone: a synthesis	217
	Recent climate change in the rainforest zone	231
8.4	Approaches and methods for predicting geomorphological change:	
	physical models versus conceptual/empirical approaches	234
8.5	Potential ecological, hydrological and geomorphological responses to	
	predicted future climate change in rainforest areas	235
8.6	Research gaps and priorities for improvement to geomorphological	2.42
	predictions in the humid tropics	243
8.7	Summary and conclusions	243
9	Tropical savannas	248
	michael e. meadows and david s. g. thomas	
	Introduction	248
	Key landforms and processes	255
	Landscape sensitivity, thresholds and 'hotspots'	262
9.4	A case study in geomorphic impacts of climate change: the Kalahari of	
	southern Africa	265
9.5	Concluding remarks	269
10	Deserts	276
	NICHOLAS LANCASTER	
	Introduction	276
	2 Drivers of change and variability in desert geomorphic systems	278
	Fluvial geomorphic systems in deserts	283
	Aeolian systems	286
10.5	5 Discussion	291
11	Mediterranean landscapes	297
	MARIA SALA	
	Introduction	297
	2 Geology, topography and soils	297
	3 Climate, hydrology, vegetation and geomorphological processes	299
11.4	Long-term environmental change in Mediterranean	202
	landscapes	303

11.5	Traditional human impacts in Mediterranean landscapes and	
	nineteenth- and twentieth century change	307
11.6	Contemporary and expected near-future land use changes	310
11.7	Global environmental change in Mediterranean environments and its	
	interaction with land use change	312
11.8	Concluding remarks	315
12	Temperate forests and rangelands	321
	ROY C. SIDLE AND TIM P. BURT	
12.1	Introduction	321
12.2	Global distribution of mid-latitude temperate forests and rangelands	323
12.3	Potential climate change scenarios and geomorphic consequences	325
12.4	Types, trajectories and vulnerabilities associated with anticipated mass	
	wasting responses to climate change	325
12.5	Anthropogenic effects on geomorphic processes	328
12.6	Techniques for assessing effects of anthropogenic and climate-induced	
	mass wasting	334
12.7	Summary and conclusions	337
13	Tundra and permafrost-dominated taiga	344
.,	MARIE-FRANÇOISE ANDRÉ AND OLEG ANISIMOV	344
12 1	•	244
	Permafrost regions: a global change 'hotspot'	344
	Permafrost indicators: current trends and projections	348
13.3	Permafrost thaw as a driving force of landscape change in tundra/taiga	250
12.4	areas	350
	Impact of landscape change on greenhouse gas release	354
	Socioeconomic impact and hazard implications of thermokarst activity	356
	Vulnerability of arctic coastal regions exposed to accelerated erosion	358
13.7	Discriminating the climate, sea level and land use components of	260
12.0	global change	360
	Lessons from the past	361
13.9	Geomorphological services and recommendations for future	262
	management of permafrost regions	362
14	Ice sheets and ice caps	368
	DAVID SUGDEN	
14.1	Introduction	368
14.2	Distribution of ice sheets and ice caps	369
	Ice sheet and ice cap landscapes	374
	Ice sheets and ice caps: mass balance	378
	Ice flow and ice temperature	380
	External controls and feedbacks	381
	Landscapes of glacial erosion and deposition	384
	How will ice sheets and ice caps respond to global warming?	389
	Conclusion and summary	399

	environmental change: synthesis and new agendas	
	for the twenty-first century	403
	THOMAS SPENCER, OLAV SLAYMAKER AND CHRISTINE	
	embleton-hamann	
15.1	Introduction: beyond the IPCC Fourth Assessment Report	403
15.2	Geomorphological processes and global environmental change	405
15.3	Landscapes and global environmental change	407
15.4	Conclusions: new geomorphological agendas for the twenty-first	
	century	416
Inde:	x	424

The plates are situated between pages 80 and 81*

^{*}These plates are available for download in colour from www.cambridge.org/9780521878128