CONTENTS | | Preface to the SI Edition xii Preface xiii List of Symbols, Units, and Notation xix | | | | | |-----------|---|--|--|--|--| | CHAPTER I | Introduction I | | | | | | | Case Study: The Future Beckons: Will the Electric Power Industry Heed the Call? 2 1.1 History of Electric Power Systems 10 1.2 Present and Future Trends 17 1.3 Electric Utility Industry Structure 21 1.4 Computers in Power System Engineering 22 1.5 PowerWorld Simulator 24 | | | | | | CHAPTER 2 | Fundamentals 31 | | | | | | | Case Study: Making Microgrids Work 32 2.1 Phasors 46 2.2 Instantaneous Power in Single-Phase AC Circuits 47 2.3 Complex Power 53 2.4 Network Equations 58 2.5 Balanced Three-Phase Circuits 60 2.6 Power in Balanced Three-Phase Circuits 68 2.7 Advantages of Balanced Three-Phase Versus Single-Phase Systems 74 | | | | | ### **CHAPTER 3** Power Transformers 90 | Case Study: PJM Manages Aging Transformer Fleet 91 | | | | | |---|--|--|--|--| | 3.1 The Ideal Transformer 96 | | | | | | 3.2 Equivalent Circuits for Practical Transformers 102 | | | | | | 3.3 The Per-Unit System 108 | | | | | | 3.4 Three-Phase Transformer Connections and Phase Shift | | | | | | 3.5 Per-Unit Equivalent Circuits of Balanced Three-Phase | | | | | | Two-Winding Transformers 121 | | | | | | 3.6 Three-Winding Transformers 126 | | | | | | 3.7 Autotransformers 130 | | | | | **3.8** Transformers with Off-Nominal Turns Ratios 131 | CHARTER | 4 | Transmission | 1: | Dawa ma a taus | LEO | |---------|---|--------------|------|----------------|-----| | CHAPIEK | 4 | iransmission | Line | Parameters | 159 | | Case Study: Transmission Line Conductor Design Comes of Age | 160 | |--|-----| | Case Study: Six Utilities Share Their Perspectives on Insulators | 164 | - **4.1** Transmission Line Design Considerations 169 - **4.2** Resistance 174 - **4.3** Conductance 177 - **4.4** Inductance: Solid Cylindrical Conductor 178 - **4.5** Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing 183 - **4.6** Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors 185 - **4.7** Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return 193 - **4.8** Electric Field and Voltage: Solid Cylindrical Conductor 199 - **4.9** Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing 201 - **4.10** Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors 204 - **4.11** Shunt Admittances: Lines with Neutral Conductors and Earth Return 207 - **4.12** Electric Field Strength at Conductor Surfaces and at Ground Level 212 - **4.13** Parallel Circuit Three-Phase Lines 215 ## CHAPTER 5 Transmission Lines: Steady-State Operation 233 Case Study: The ABCs of HVDC Transmission Technologies 234 - **5.1** Medium and Short Line Approximations 248 - **5.2** Transmission-Line Differential Equations 254 - 5.3 Equivalent π Circuit 260 - **5.4** Lossless Lines 262 - **5.5** Maximum Power Flow 271 - **5.6** Line Loadability 273 - **5.7** Reactive Compensation Techniques 277 #### **CHAPTER 6 Power Flows 294** Case Study: Future Vision 295 Case Study: Characteristics of Wind Turbine Generators for Wind Power Plants 305 - 6.1 Direct Solutions to Linear Algebraic Equations: - Gauss Elimination 311 - **6.2** Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss–Seidel 315 - **6.3** Iterative Solutions to Nonlinear Algebraic Equations: Newton–Raphson 321 | | 6.4 The Power-Flow Problem 325 6.5 Power-Flow Solution by Gauss-Seidel 331 6.6 Power-Flow Solution by Newton-Raphson 334 6.7 Control of Power Flow 343 6.8 Sparsity Techniques 349 6.9 Fast Decoupled Power Flow 352 6.10 The "DC" Power Flow 353 6.11 Power-Flow Modeling of Wind Generation 354 Design Projects 1-5 366 | |-----------|--| | CHAPTER 7 | Symmetrical Faults 379 | | | Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems 380 7.1 Series R-L Circuit Transients 382 7.2 Three-Phase Short Circuit—Unloaded Synchronous Machine 385 7.3 Power System Three-Phase Short Circuits 389 7.4 Bus Impedance Matrix 392 7.5 Circuit Breaker and Fuse Selection 400 Design Project 4 (continued) 417 | | CHAPTER 8 | Symmetrical Components 419 | | | Case Study: Circuit Breakers Go High Voltage 421 8.1 Definition of Symmetrical Components 428 8.2 Sequence Networks of Impedance Loads 433 8.3 Sequence Networks of Series Impedances 441 8.4 Sequence Networks of Three-Phase Lines 443 8.5 Sequence Networks of Rotating Machines 445 8.6 Per-Unit Sequence Models of Three-Phase Two-Winding Transformers 451 8.7 Per-Unit Sequence Models of Three-Phase Three-Winding Transformers 456 8.8 Power in Sequence Networks 459 | | CHAPTER 9 | Unsymmetrical Faults 471 | | | Case Study: Fires at U.S. Utilities 472 9.1 System Representation 473 9.2 Single Line-to-Ground Fault 478 9.3 Line-to-Line Fault 483 9.4 Double Line-to-Ground Fault 485 9.5 Sequence Bus Impedance Matrices 492 Design Project 4 (continued) 512 Design Project 6 513 | ### **CHAPTER 10** System Protection 516 | Casa | Ctudo | The | Future | of | Dower | Trar | smission | 519 | Q | |------|--------|------|--------|----|-------|--------|------------|-------|---| | Case | Stuav: | i ne | ruure | OL | Power | T Tall | ISHHISSIOH | - 216 | O | - **10.1** System Protection Components 525 - **10.2** Instrument Transformers 526 - 10.3 Overcurrent Relays 533 - **10.4** Radial System Protection 537 - 10.5 Reclosers and Fuses 541 - 10.6 Directional Relays 545 - 10.7 Protection of Two-Source System with Directional Relays 546 - **10.8** Zones of Protection 547 - 10.9 Line Protection with Impedance (Distance) Relays 551 - 10.10 Differential Relays 557 - **10.11** Bus Protection with Differential Relays 559 - 10.12 Transformer Protection with Differential Relays 560 - 10.13 Pilot Relaying 565 - 10.14 Digital Relaying 566 ### **CHAPTER II Transient Stability 579** Case Study: Real-Time Dynamic Security Assessment 581 - 11.1 The Swing Equation 590 - 11.2 Simplified Synchronous Machine Model and System Equivalents 596 - 11.3 The Equal-Area Criterion 598 - 11.4 Numerical Integration of the Swing Equation 608 - 11.5 Multimachine Stability 613 - 11.6 A Two-Axis Synchronous Machine Model 621 - 11.7 Wind Turbine Machine Models 625 - 11.8 Design Methods for Improving Transient Stability 632 ### **CHAPTER 12 Power System Controls 639** Case Study: Overcoming Restoration Challenges Associated with Major Power System Disturbances 642 - **12.1** Generator-Voltage Control 652 - **12.2** Turbine-Governor Control 657 - **12.3** Load-Frequency Control 663 - 12.4 Economic Dispatch 667 - 12.5 Optimal Power Flow 680 ## CHAPTER 13 Transmission Lines: Transient Operation 690 Case Study: VariSTAR® Type AZE Surge Arresters 691 Case Study: Change in the Air 695 - 13.1 Traveling Waves on Single-Phase Lossless Lines 707 - **13.2** Boundary Conditions for Single-Phase Lossless Lines 710 #### CONTENTS - 13.3 Bewley Lattice Diagram 719 - 13.4 Discrete-Time Models of Single-Phase Lossless Lines and Lumped RLC Elements 724 - **13.5** Lossy Lines 731 - 13.6 Multiconductor Lines 735 - **13.7** Power System Overvoltages 738 - 13.8 Insulation Coordination 745 #### **CHAPTER 14 POWER DISTRIBUTION 757** Case Study: The Path of the Smart Grid 759 - **14.1** Introduction to Distribution 770 - **14.2** Primary Distribution 772 - 14.3 Secondary Distribution 780 - **14.4** Transformers in Distribution Systems 785 - 14.5 Shunt Capacitors in Distribution Systems 795 - **14.6** Distribution Software 800 - 14.7 Distribution Reliability 801 - 14.8 Distribution Automation 804 - **14.9** Smart Grids 807 Appendix 814 Index 818