


Smart Grid

Fundamentals of Design and Analysis

JAMES MOMOH

CONTENTS

ref	reface				
1	SMA	RT GRID	ARCHITECTURAL DESIGNS	1	
	1.1	Introduc	ction	1	
	1.2	Today's	Grid versus the Smart Grid	2	
	1.3		Independence and Security Act of 2007: Rationale Smart Grid	2	
	1.4	Comput	tational Intelligence	4	
	1.5	Power S	System Enhancement	5	
	1.6	Commu	inication and Standards	5	
	1.7	Environ	nment and Economics	5	
	1.8	Outline of the Book		5	
	1.9				
	1.10	Stakeholder Roles and Function			
		1.10.1	Utilities	9	
		1.10.2	Government Laboratory Demonstration Activities	9	
		1.10.3	Power Systems Engineering Research Center (PSERC)	10	
		1.10.4	Research Institutes	10	
		1.10.5	Technology Companies, Vendors, and Manufacturers	10	
	1.11		g Definition of the Smart Grid Based on Performance		
		Measur	es	11	
	1.12	Represe	entative Architecture	12	
	1.13 Functions of Smart Grid Components		ons of Smart Grid Components	12	
		1.13.1	Smart Devices Interface Component	13	
		1.13.2	Storage Component	13	
		1.13.3	Transmission Subsystem Component	14	
		1.13.4	Monitoring and Control Technology Component	14	
		1.13.5	Intelligent Grid Distribution Subsystem Component	14	
		1.13.6	Demand Side Management Component	14	

vi CONTENTS

	1.14	Summa	ary	15	
	Refere	ences		15	
	Sugge	sted Rea	adings	15	
2	CNANI	DT CDIF	COMMUNICATIONS AND MEASUREMENT		
_		NOLOG		16	
	2.1	Comm	unication and Measurement	16	
	2.2	Monito	oring, PMU, Smart Meters, and Measurements		
		Technologies			
		2.2.1	Wide Area Monitoring Systems (WAMS)	20	
		2.2.2	Phasor Measurement Units (PMU)	20	
		2.2.3	Smart Meters	21	
		2.2.4	Smart Appliances	22	
		2.2.5	Advanced Metering Infrastructure (AMI)	22	
	2.3	GIS an	nd Google Mapping Tools	23	
	2.4	Multia	gent Systems (MAS) Technology	24	
		2.4.1	Multiagent Systems for Smart Grid Implementation	25	
		2.4.2	Multiagent Specifications	25	
		2.4.3	Multiagent Technique	26	
	2.5	Microg	grid and Smart Grid Comparison	27	
	2.6	Summa	ary	27	
	Refer	ences		27	
3	PERF	ORMAN	NCE ANALYSIS TOOLS FOR SMART GRID DESIGN	29	
	3.1	Introdu	action to Load Flow Studies	29	
	3.2				
			t Load Flow Methods	30	
	3.3	Load Flow State of the Art: Classical, Extended Formulations,			
		and Al	gorithms	31	
		3.3.1	Gauss-Seidal Method	31	
		3.3.2	Newton-Raphson Method	32	
		3.3.3	Fast Decouple Method	33	
		3.3.4	Distribution Load Flow Methods	33	
	3.4	Congestion Management Effect			
	3.5	Load F	Flow for Smart Grid Design	38	
		3.5.1	Cases for the Development of Stochastic Dynamic Optimal Power Flow (DSOPF)	41	
	3.6	DSOP	F Application to the Smart Grid	41	
	3.7		Security Assessment (SSA) and Contingencies	43	
	0.7	Statio	Security 1155555inone (5511) and Contingencies	1.	

CONTENTS

	3.8	Conting	gencies and Their Classification	44
		3.8.1	Steady-State Contingency Analysis	46
		3.8.2	Performance Indices	47
		3.8.3	Sensitivity-Based Approaches	48
	3.9	Conting	gency Studies for the Smart Grid	48
	3.10	Summa	ry	49
	Refere	ences		50
	Sugge	ested Rea	dings	50
4	STAB	ILITY AI	NALYSIS TOOLS FOR SMART GRID	51
	4.1	Introdu	ction to Stability	51
	4.2	Strengtl Tools	ns and Weaknesses of Existing Voltage Stability Analysis	51
	4.3	Voltage	Stability Assessment	56
		4.3.1	Voltage Stability and Voltage Collapse	57
		4.3.2	Classification of Voltage Stability	58
		4.3.3	Static Stability (Type I Instability)	59
		4.3.4	Dynamic Stability (Type II Instability)	59
		4.3.5	Analysis Techniques for Dynamic Voltage Stability Studies	60
	4.4	Voltage	Stability Assessment Techniques	62
	4.5	•	Stability Indexing	65
	4.6	_	is Techniques for Steady-State Voltage Stability Studies	68
		4.6.1	Direct Methods for Detecting Voltage Collapse Points	69
		4.6.2	Indirect Methods (Continuation Methods)	69
	4.7		ation and Implementation Plan of Voltage Stability	70
	4.8		zing Stability Constraint through Preventive Control of	
	.,,		Stability	71
	4.9	Angle Stability Assessment		
		4.9.1	Transient Stability	75
		4.9.2	Stability Application to a Practical Power System	76
		4.9.3	Boundary of the Region of Stability	77
		4.9.4	Algorithm to Find the Controlling UEP	80
		4.9.5	Process Changes in Design of DSA for the Smart Grid	80
	4.10	State E	stimation	81
		4.10.1	Mathematical Formulations for Weighted Least	
			Square Estimation	84
		4.10.2	Detection and Identification of Bad Data	86
		4.10.3	Pre-Estimation Analysis	86

viii CONTENTS

		4.10.4	Postestimation Analysis	88
		4.10.5	Robust State Estimation	90
		4.10.6	SE for the Smart Grid Environment	94
		4.10.7	Real-Time Network Modeling	95
		4.10.8	Approach of the Smart Grid to State Estimation	95
		4.10.9	Dynamic State Estimation	97
		4.10.10	Summary	98
	Refer	ences		98
	Sugge	ested Read	dings	98
5	СОМ	PUTATIO	NAL TOOLS FOR SMART GRID DESIGN	100
	5.1	Introduc	ction to Computational Tools	100
	5.2	Decision	n Support Tools (DS)	101
		5.2.1	Analytical Hierarchical Programming (AHP)	102
	5.3	Optimiz	ation Techniques	103
	5.4	Classica	l Optimization Method	103
		5.4.1	Linear Programming	103
		5.4.2	Nonlinear Programming	105
		5.4.3	Integer Programming	106
		5.4.4	Dynamic Programming	107
		5.4.5	Stochastic Programming and Chance Constrained Programming (CCP)	107
	5.5	Heuristi	c Optimization	108
		5.5.1	Artificial Neural Networks (ANN)	109
		5.5.2	Expert Systems (ES)	111
	5.6	Evolutio	onary Computational Techniques	112
		5.6.1	Genetic Algorithm (GA)	112
		5.6.2	Particle Swarm Optimization (PSO)	113
		5.6.3	Ant Colony Optimization	113
	5.7	Adaptiv	e Dynamic Programming Techniques	115
	5.8	Pareto N	Methods	117
	5.9	Hybridiz Smart G	zing Optimization Techniques and Applications to the	118
	5.10		ational Challenges	118
	5.11	Summar	-	119
	Refer			120
6	PATH	WAY FO	R DESIGNING SMART GRID	122
	6.1		ction to Smart Grid Pathway Design	122
	6.2		and Solutions to Smart Grid Development	122

CONTENTS

Solution Pathways for Designing Smart Grid Using Advanced

6.3

		Optimi	zation and Control Techniques for Selection Functions	125
	6.4	Genera	l Level Automation	125
		6.4.1	Reliability	125
		6.4.2	Stability	127
		6.4.3	Economic Dispatch	127
		6.4.4	Unit Commitment	128
		6.4.5	Security Analysis	130
	6.5		ower Systems Automation of the Smart Grid	
		at Tran	smission Level	130
		6.5.1	Fault and Stability Diagnosis	131
		6.5.2	Reactive Power Control	132
	6.6	Distrib	ution System Automation Requirement of the Power Grid	132
		6.6.1	Voltage/VAr Control	132
		6.6.2	Power Quality	135
		6.6.3	Network Reconfiguration	136
		6.6.4	Demand-Side Management	136
		6.6.5	Distribution Generation Control	137
	6.7	End Us	ser/Appliance Level of the Smart Grid	137
	6.8	Applica	ations for Adaptive Control and Optimization	137
	6.9	Summa	ary	138
	Refere	ences		138
	Sugge	ested Rea	ading	139
7	RENE	WABLE	ENERGY AND STORAGE	140
	7.1	Renewa	able Energy Resources	140
	7.2	Sustain	hable Energy Options for the Smart Grid	141
		7.2.1	Solar Energy	141
		7.2.2	Solar Power Technology	142
		7.2.3	Modeling PV Systems	142
		7.2.4	Wind Turbine Systems	144
		7.2.5	Biomass-Bioenergy	145
		7.2.6	Small and Micro Hydropower	147
		7.2.7	Fuel Cell	147
		7.2.8	Geothermal Heat Pumps	148
	7.3	Penetration and Variability Issues Associated with Sustainable		
		Energy	Technology	148
	7.4	Deman	nd Response Issues	150
	7.5	Electric	c Vehicles and Plug-in Hybrids	151

X CONTENTS

	7.6	PHEV	Technology	151		
		7.6.1	Impact of PHEV on the Grid	151		
	7.7	Enviro	nmental Implications	152		
		7.7.1	Climate Change	153		
		7.7.2	Implications of Climate Change	153		
	7.8	Storage	e Technologies	154		
	7.9	Tax Cr	edits	158		
	7.10	Summa	ary	159		
	Refer	ences		159		
	Sugge	ested Rea	ading	159		
8	INTEI	ROPERA	ABILITY, STANDARDS, AND CYBER SECURITY	160		
	8.1	Introdu	action	160		
	8.2	Interop	perability	161		
		8.2.1	State-of-the-Art-Interoperability	161		
		8.2.2	Benefits and Challenges of Interoperability	161		
		8.2.3	Model for Interoperability in the Smart Grid			
			Environment	162		
		8.2.4	Smart Grid Network Interoperability	162		
		8.2.5	Interoperability and Control of the Power Grid	163		
	8.3	Standa	rds	163		
		8.3.1	Approach to Smart Grid Interoperability Standards	163		
	8.4	Smart	Grid Cyber Security	166		
		8.4.1	Cyber Security State of the Art	166		
		8.4.2	Cyber Security Risks	169		
		8.4.3	Cyber Security Concerns Associated with AMI	171		
		8.4.4	Mitigation Approach to Cyber Security Risks	171		
	8.5	-	Security and Possible Operation for Improving			
			dology for Other Users	173		
	8.6	Summa	ary	174		
	Refer			174		
	Sugge	ested Rea	adings	174		
9	RESEARCH, EDUCATION, AND TRAINING FOR THE SMART					
	GRID		are.	176		
	9.1	Introdu		176		
	9.2		ch Areas for Smart Grid Development	176		
	9.3	Kesear	ch Activities in the Smart Grid	178		

CONTENTS xi

Inde	×			203
11	EPILO	GUE		200
	Refere	ences		199
		Summ	ary	198
			its of Smart Transmission	198
	10.9		enges of Smart Transmission	198
	10.8		ds and Benchmark Systems	197
		10.7.2	Approach for Smart Grid Application	196
		10.7.1	Description of Smart Grid Activity	196
	10.7	Case S	Study of RER Integration	196
		Auton		191
	10.6		For Optimal Network Reconfiguration in Distribution	
	10.5		System Unit Commitment (UC) Problem	186
	10.3		grid with Renewable Energy	185
	10.2		aced Metering	185
	10.1 10.2	Introd	uction nstration Projects	184 184
10			ES AND TESTBEDS FOR THE SMART GRID	184
	Refere	ccs		102
	Refere		an y	183
	9.0	Summ		183
	9.6		ng and Professional Development	182
		9.5.9	Security Module 9: Case Studies and Testbeds	182 182
		9.5.8	Module 8: Standards, Interoperability, and Cyber	1.02
		9.5.7	Module 7: Communication Technologies	182
		9.5.6	Module 6: Renewable Energy Technologies	181
		9.5.5	Module 5: Pathways to Design	181
		9.5.4	Module 4: Tools and Techniques	181
		9.5.3	Module 3: Functions	181
		9.5.2	Module 2: Architecture	180
		9.5.1	Module 1: Introduction	180
	9.5		Grid Education	179
	9.4	Multid	lisciplinary Research Activities	178