Contents

Fo	rewoi	d by M	agnus George Craford	ix
Fo	rewoi	d by C.	P. Wong	xi
Fo	rewoi	d by B.	J. Lee	xiii
	reface			
				XV
A	cknow	ledgme	nts	xix
Al	bout tl	he Auth	ors	xxi
1	Intro	duction	1	1
	1.1		rical Evolution of Lighting Technology	1
	1.2		opment of LEDs	2
	1.3		Physics of LEDs	6
		1.3.1	Materials	6
		1.3.2	Electrical and Optical Properties	10
		1.3.3	Mechanical and Thermal Properties	18
	1.4		rial Chain of LED	19
		1.4.1	LED Upstream Industry	21
			LED Midstream Industry	22
		1.4.3	LED Downstream Industry	22
	1.5	Summ	ary	28
	Refe	rences		29
2	Fund	lamenta	als and Development Trends of High Power LED Packaging	33
	2.1	Brief	Introduction to Electronic Packaging	33
		2.1.1	About Electronic Packaging and Its Evolution	33
		2.1.2	Wafer Level Packaging, More than Moore, and SiP	36
	2.2	LED (37
		2.2.1	Current Spreading Efficiency	37
		2.2.2	Internal Quantum Efficiency	41
		2.2.3	High Light Extraction Efficiency	43
	2.3		and Functions of LED Packaging	48
		2.3.1	Low Power LED Packaging	49
		2.3.2	High Power LED Packaging	50

vi

	2.4	Key Fa	actors and System Design of High Power LED Packaging	51
	2.5	Develo	opment Trends and Roadmap	57
		2.5.1	Technology Needs	57
		2.5.2	Packaging Types	59
	2.6	Summ	ary	62
	Refer	ences		62
3	Optio	cal Desi	gn of High Power LED Packaging Module	67
	3.1	Proper	ties of LED Light	67
			Light Frequency and Wavelength	67
		3.1.2	Spectral Distribution	69
		3.1.3	Flux of Light	69
		3.1.4	Lumen Efficiency	71
			Luminous Intensity, Illuminance and Luminance	71
		3.1.6	Color Temperature, Correlated Color Temperature and	
			Color Rendering Index	76
	*	3.1.7	White Light LED	80
	3.2	Key C	Components and Packaging Processes for Optical Design	83
		3.2.1	Chip Types and Bonding Process	83
		3.2.2	· · · · · · · · · · · · · · · · · · ·	85
		3.2.3	Lens and Molding Process	90
	3.3		Extraction	93
	3.4		al Modeling and Simulation	98
		3.4.1	Chip Modeling	98
		3.4.2	Phosphor Modeling	102
	3.5	Phosp	hor for White LED Packaging	108
		3.5.1	,	108
		3.5.2	Phosphor Thickness and Concentration for	
			White LED Packaging	118
		3.5.3	Phosphor for Spatial Color Distribution	123
	3.6	Collab	porative Design	129
		3.6.1	Co-design of Surface Micro-Structures of LED	
			Chips and Packages	129
		3.6.2	Application Specific LED Packages	134
	3.7	Summ	nary	144
	Refe	rences		144
4	Ther	mal Ma	anagement of High Power LED Packaging Module	149
	4.1	Basic	Concepts of Heat Transfer	149
		4.1.1	Conduction Heat Transfer	150
		4.1.2	Convection Heat Transfer	150
		4.1.3	Thermal Radiation	151
		4.1.4	Thermal Resistance	153
	4.2	Thern	nal Resistance Analysis of Typical LED Packaging	154
	4.3	Variou	us LED Packages for Decreasing Thermal Resistance	156
		4.3.1	Development of LED Packaging	156

		4.3.2 4.3.3	Thermal Resistance Decrease for LED Packaging SiP/COB LED Chip Packaging Process	158 162
	4.4 Refer	Summ ences	ary	. 164 164
5			ngineering of High Power LED Packaging	167
	5.1		pt of Design for Reliability (DfR) and Reliability Engineering	167
		5.1.1	Fundamentals of Reliability	168
		5.1.2	Life Distribution	169
		5.1.3	Accelerated Models	172
	5.2	5.1.4	Applied Mechanics	175
	3.2	5.2.1	Power LED Packaging Reliability Test	179
		5.2.1	Traditional Testing Standards, Methods, and Evaluation	179
		5.2.3	Methods for Failure Mechanism Analysis	182
	5.3		Failure Mechanisms Analysis Reliability Evaluation	184 187
	3.3	5.3.1	Material Property Database	190
		5.3.2	Numerical Modeling and Simulation	190
	5.4	Summ		211
		ences	ur y	211
6			ED Packaging Applications	215
	6.1	-	l Design	215
		6.1.1	Introduction of Light Control	215
		6.1.2	Reflectors	220
		6.1.3 6.1.4	Lenses Diffuser	232
		6.1.5		272
	6.2		Color Design and Control in LED Applications al Management	277 287
	0.2	6.2.1	Analysis of System Thermal Resistance	287
		6.2.2	Types of Heat Dissipation to Environment	293
		6.2.3	Design and Optimization of Fin Heat Sink	293
		6.2.4	Design Examples of Thermal Management of Typical	290
		0.2.1	LED Lighting Systems	303
	6.3	Drive	Circuit and Intelligent Control Design	311
		6.3.1	Typical LED Wireless Intelligent Control System	311
		6.3.2	Working Principles of Wireless Intelligent	
			Control System	312
	6.4	Summ	•	313
	Refer	rences	•	313
7	LED	Measu	rement and Standards	317
	7.1		v of Measurement for LED Light Source	317
	7.2		ous Flux and Radiant Flux	318
	7.3	Measu	rement for Luminous Intensity	319
	7.4		Chromaticity Coordinates	320

Contents		viii
7.5	Dominant Wavelength Determination Algorithm	321
	7.5.1 Curve Fitting Method	321
7.6	LED Color Purity	. 322
7.7	Color Temperature and Correlated Color Temperature of Light Source	323
7.8	Automatic Sorting for LEDs	324
7.9	Measurement for LED Road Lights	325
	7.9.1 Electrical Characteristics	325
	7.9.2 Color Characteristics	326
	7.9.3 Light Distribution Characteristics	326
	7.9.4 Dynamic Characteristics	326
	7.9.5 Test of Reliability	329
7.10	Summary	329
Refere	ences	329
Appendi	x: Measurement Method for Integral LED Road Lights	
Approve	d by China Solid State Lighting Alliance	33
Index		349