Contents

	Preface XIII
	List of Contributors XV
1	Biomolecular Computing: From Unconventional Computing to "Smart' Biosensors and Actuators – Editorial Introduction 1 Evgeny Katz References 5
2	Peptide-Based Computation: Switches, Gates, and Simple
	Arithmetic 9
	Zehavit Dadon, Manickasundaram Samiappan, Nathaniel Wagner,
	Nurit Ashkenasy, and Gonen Ashkenasy
2.1	Introduction 9
2.2	Peptide-Based Replication Networks 10
2.2.1	Template-Assisted Replication 10
2.2.2	Theoretical Prediction of the Network Connectivity 11
2.2.3	De novo Designed Synthetic Networks 12
2.3	Logic Gates within Ternary Networks 13
2.3.1	Uniform Design Principles of All Two-Input Gates 13
2.3.2	OR Logic 14
2.3.3	AND Logic 15
2.3.4	NAND Logic 15
2.3.5	XOR Logic 15
2.4	Symmetry and Order Requirements for Constructing the Logic Gates 16
2.4.1	Symmetry and Order in Peptide-Based Catalytic Networks 16
2.4.2	How Symmetry and Order Affect the Replication of RNA
	Quasispecies 17
2.5	Taking the Steps toward More Complex Arithmetic 19
2.5.1	Arithmetic Units 19
2.5.2	Network Motifs 20

١	VI Contents	
	2.6	Experimental Logic Gates 21
	2.6.1	OR Logic 21
	2.6.2	NOT, NOR, and NOTIF Logic 21
	2.6.3	Additional Logic Operations 23
	2.7	Adaptive Networks 24
	2.7.1	Chemical Triggering 24
	2.7.2	Light Triggering 24
	2.7.3	Light-Induced Logic Operations 25
	2.8	Peptide-Based Switches and Gates for Molecular Electronics 28
	2.9	Summary and Conclusion 29
		Acknowledgments 30
		References 30
	3	Biomolecular Electronics and Protein-Based Optical Computing 33
		Jordan A. Greco, Nicole L. Wagner, Matthew J. Ranaghan,
		Sanguthevar Rajasekaran, and Robert R. Birge
	3.1	Introduction 33
	3.2	Biomolecular and Semiconductor Electronics 34
	3.2.1	Size and Speed 34
	3.2.2	Architecture 36
	3.2.3	Nanoscale Engineering 37
	3.2.4	Stability 38
	3.2.5	Reliability 38
	3.3	Bacteriorhodopsin as a Photonic and Holographic Material
		for Bioelectronics 40
	3.3.1	The Light-Induced Photocycle 40
	3.3.2	The Branched Photocycle 42
	3.4	Fourier Transform Holographic Associative Processors 42
	3.5	Three-Dimensional Optical Memories 45
	3.5.1	Write, Read, and Erase Operations 46
	3.5.2	Efficient Algorithms for Data Processing 48
	3.5.3	Multiplexing and Error Analysis 50
	3.6	Genetic Engineering of Bacteriorhodopsin for Device
		Applications 51
	3.7	Future Directions 53
		Acknowledgments 54
		References 54
	4	Bioelectronic Devices Controlled by Enzyme-Based Information
y, use		Processing Systems 61
		Evgeny Katz
	4.1	Introduction 61
	4.2	Enzyme-Based Logic Systems Producing pH Changes
		as Output Signals 62

4.3	Interfacing of the Enzyme Logic Systems with Electrodes Modified with Signal-Responsive Polymers 64	
4.4	Switchable Biofuel Cells Controlled by the Enzyme Logic Systems 68	
4.5	Biomolecular Logic Systems Composed of Biocatalytic	
	and Biorecognition Units and Their Integration with Biofuel Cells 70	
4.6	Processing of Injury Biomarkers by Enzyme Logic Systems Associated	
	with Switchable Electrodes 74	
4.7	Summary and Outlook 77	
	Acknowledgments 78	
	References 78	
5	Enzyme Logic Digital Biosensors for Biomedical Applications 81	
	Evgeny Katz and Joseph Wang	
5.1	Introduction 81	
5.2	Enzyme-Based Logic Systems for Identification of Injury Conditions 82	
5.3	Multiplexing of Injury Codes for the Parallel Operation of Enzyme Logic Gates 85	
5.4	Scaling Up the Complexity of the Biocomputing Systems for	
	Biomedical Applications – Mimicking Biochemical Pathways 89	
5.5	Application of Filter Systems for Improving Digitalization	
	of the Output Signals Generated by Enzyme Logic Systems	
	for Injury Analysis 94	
5.6	Conclusions and Perspectives 96	
	Acknowledgments 98	
	Appendix 98	
	References 99	
6	Information Security Applications Based on Biomolecular	
	Systems 103	
	Guinevere Strack, Heather R. Luckarift, Glenn R. Johnson,	
	and Evgeny Katz	
6.1	Introduction 103	
6.2	Molecular and Bio-molecular Keypad Locks 104	
6.3	Antibody Encryption and Steganography 108	
6.4	Bio-barcode 113	
6.5	Conclusion 114	
	Acknowledgments 114	
	References 114	
7	Biocomputing: Explore Its Realization and Intelligent	
	Logic Detection 117	
	Ming Zhou and Shaojun Dong	
7.1	Introduction 117	
7.2	DNA Biocomputing 119	

VIII	Contents	
	7.3	Aptamer Biocomputing 121
	7.4	Enzyme Biocomputing 124
	7.5	Conclusions and Perspectives 128
		References 129
	8	Some Experiments and Models in Molecular Computing and Robotics 133 Milan N. Stojanovic and Darko Stefanovic
	8.1	Introduction 133
	8.2	From Gates to Programmable Automata 133
	8.3	From Random Walker to Molecular Robotics 139
	8.4	Conclusions 142
		Acknowledgments 143
		References 143
	9	Biomolecular Finite Automata 145 Tamar Ratner, Sivan Shoshani, Ron Piran, and Ehud Keinan
	9.1	Introduction 145
	9.2	Biomolecular Finite Automata 146
	9.2.1	Theoretical Models of a Molecular Turing Machine 146
	9.2.2	The First Realization of an Autonomous DNA-Based Finite Automaton 150
	9.2.3	Three-Symbol-Three-State DNA-Based Automata 155
	9.2.4	Molecular Cryptosystem for Images by DNA Computing 157
	9.2.5	Molecular Computing Device for Medical Diagnosis and Treatment <i>In Vitro</i> 159
	9.2.6	DNA-Based Automaton with Bacterial Phenotype Output 161
	9.2.7	Molecular Computing with Plant Cell Phenotype 163
	9.3	Biomolecular Finite Transducer 167
	9.4	Applications in Developmental Biology 172
	9.5	Outlook 176
		References 178
	10	In Vivo Information Processing Using RNA Interference 181
	10.1	Yaakov Benenson
	10.1	Introduction 181
	10.1.1	Regulatory Pathways as Computations 181
	10.1.2	A Computation Versus a Computer 182
	10.1.3	Prior Work on Synthetic Biomolecular Computing Circuits 182
	10.2	RNA Interference-Based Logic 183
	10.2.1	General Considerations 183
	10.2.2	Logic Circuit Blueprint 184
	10.2.3	Experimental Confirmation of the Computational Core 188
	10.3	Building the Sensory Module 189
	10.3.1	Direct Control of siRNA by mRNA Inputs 191

10.3.2 10.4	Complex Transcriptional Regulation Using RNAi-Based Circuits 194 Outlook 195
	References 197
11	Biomolecular Computing Systems 199
	Harish Chandran, Sudhanshu Garg, Nikhil Gopalkrishnan,
	and John H. Reif
11.1	Introduction 199
11.1.1	Organization of the Chapter 199
11.2	DNA as a Tool for Molecular Programming 200
11.2.1	DNA Structure 200
11.2.2	Review of DNA Reactions 200
11.3	Birth of DNA Computing: Adleman's Experiment
	and Extensions 203
11.3.1	NP-Complete Problems 203
11.3.2	Hamiltonian Path Problem via DNA Computing 204
11.3.3	Other Models of DNA Computing 204
11.3.4	Shortcomings and Nonscalability of Schemes Using DNA
	Computation to Solve NP-Complete Problems 204
11.4	Computation Using DNA Tiles 205
11.4.1	TAM: an Abstract Model of Self-Assembly 205
11.4.2	Algorithmic Assembly via DNA Tiling Lattices 206
11.4.2.1	Source of Errors 206
11.4.3	Algorithmic Error Correction Schemes for Tilings 207
11.5	Experimental Advances in Purely Hybridization-Based
	Computation 209
11.6	Experimental Advances in Enzyme-Based DNA Computing 212
11.7	Biochemical DNA Reaction Networks 217
11.8	Conclusion: Challenges in DNA-Based Biomolecular
	Computation 218
11.8.1	Scalability of Biomolecular Computations 218
11.8.2	Ease of Design and Programmability of Biomolecular
	Computations 220
11.8.3	In Vivo Biomolecular Computations 220
11.8.4	Conclusions 220
	Acknowledgments 221
	References 221
12	Enumeration Approach to the Analysis of Interacting Nucleic
3. PF	Acid Strands 225
	Satoshi Kobayashi and Takaya Kawakami
12.1	Introduction 225
12.2	Definitions and Notations for Set and Multiset 226
12.3	Chemical Equilibrium and Hybridization Reaction System 227
12.4	Symmetric Enumeration Method 230

x	Contents	
	12.4.1	Enumeration Graph 230
	12.4.2	Path Mappings 231
	12.4.3	Enumeration Scheme 232
	12.4.4	An Example of Enumeration Scheme – Folding
		of an RNA Molecule 233
	12.4.5	Convex Programming Problem for Computing Equilibrium 235
	12.5	Applying SEM to Nucleic Acid Strands Interaction 236
	12.5.1	Target Secondary Structures 237
	12.5.2	Introducing Basic Notations 237
	12.5.3	Definition of Enumeration Graph Structure 239
	12.5.4	Associated Weight Functions 241
	12.5.5	Symmetric Properties 242
	12.5.6	Complexity Issues 242
	12.6	Conclusions 243
		References 244
	13	Restriction Enzymes in Language Generation
		and Plasmid Computing 245
		Tom Head
	13.1	Introduction 245
	13.2	Wet Splicing Systems 246
	13.3	Dry Splicing Systems 249
	13.4	Splicing Theory: Its Original Motivation and Its Extensive
		Unforeseen Developments 252
	13.5	Computing with Plasmids 253
	13.6	Fluid Memory 254
	13.7	Examples of Aqueous Computations 255
	13.8	Final Comments about Computing with Biomolecules 260
		References 261
	14	Development of Bacteria-Based Cellular Computing Circuits
		for Sensing and Control in Biological Systems 265
		Michaela A. TerAvest, Zhongjian Li, and Largus T. Angenent
	14.1	Introduction 265
	14.2	Cellular Computing Circuits 267
	14.2.1	Genetic Toolbox 267
	14.2.1.1	Engineered Gene Regulation 267
	14.2.1.2	Quorum Sensing 269
	14.2.2	Implementations 269
	14.2.2.1	Oscillators 269
	14.2.2.2	Switches 270
	14.2.2.3	AND Logic Gates 270
	14.2.2.4	Edge Detector 271
	14.2.2.5	Complex Logic Functions with Multiple Strains 272
	14.2.3	Transition to In Silico Rational Design 273

14.2.4	Transition from Enzyme Computing to Bacteria-Based Biocomputing 274
14.3	Conclusion 276 Acknowledgments 277 References 277
15	The Logic of Decision Making in Environmental Bacteria 279 Rafael Silva-Rocha, Javier Tamames, and Víctor de Lorenzo
15.1	Introduction 279
15.2	Building Models for Biological Networks 281
15.3	Formulation and Simulation of Regulatory Networks 283
15.3.1	Stochastic Versus Deterministic Models 284
15.3.2	Graphical Models 285
15.4	Boolean Analysis of Regulatory Networks 285
15.4.1	Translating Biological Networks into Logic Circuits 286
15.4.2	Integration of Regulatory and Metabolic Logic in the Same Boolean Circuit 287
15.4.3	From Digital Networks to Workable Models 288
15.5	Boolean Description of m-xylene Biodegradation by <i>P. putida</i> mt-2: the TOL logicome 289
15.5.1	Narrative Description of the TOL Regulatory Circuit 291
15.5.2	Deconstruction of the Ps–Pr Regulatory Node into Three Autonomous Logic Units 292
15.5.3	Formalization of Regulatory Events at the Upper and Lower TOL Operons 294
15.5.4	3MB Is the Endogenous Signal Carrier through the Domains of the TOL Network 296
15.5.5	The TOL Logicome 296
15.6	Conclusion and Outlook 298
	Acknowledgments 299
	References 299
16	Qualitative and Quantitative Aspects of a Model for Processes Inspired by the Functioning of the Living Cell 303
	Andrzej Ehrenfeucht, Jetty Kleijn, Maciej Koutny, and Grzegorz Rozenberg
16.1	Introduction 303
16.2	Reactions 304
16.3	Reaction Systems 305
16.4	Examples 307
16.5	Reaction Systems with Measurements 310
16.6	Generalized Reactions 312
16.7	A Generic Quantitative Model 315
16.8	Approximations of Gene Expression Systems 316

ХII	Contents	
	16.9	Simulating Approximations by Reaction Systems 318
	16.10	Discussion 319
		Acknowledgments 321
		References 321
	17	Computational Methods for Quantitative Submodel Comparison 323
		Andrzej Mizera, Elena Czeizler, and Ion Petre
	17.1	Introduction 323
	17.2	Methods for Model Decomposition 324
	17.2.1	Knockdown Mutants 324
	17.2.2	Elementary Flux Modes 325
	17.2.3	Control-Based Decomposition 325
	17.3	Methods for Submodel Comparison 327
	17.3.1	Mathematically Controlled Model Comparison 327
	17.3.2	An Extension of the Mathematically Controlled Comparison 328
	17.3.3	Local Submodel Comparison 329
	17.3.4	A Quantitative Measure for the Goodness of Model Fit Against
		Experimental Data 329
	17.3.5	Quantitative Refinement 330
	17.3.6	Parameter-Independent Submodel Comparison 331
	17.3.7	Model Comparison for Pathway Identification 332
	17.4	Case Study 332
	17.4.1	A Biochemical Model for the Heat Shock Response 332
	17.4.2	Control-Based Decomposition 334
	17.4.3	The Knockdown Mutants 335
	17.4.4	Local Comparison of the Knockdown Mutants 336
	17.4.5	Parameter-Independent Comparison of the Mutant Behavior 337
	17.4.6	Pathway Identification for the Phosphorylation-Driven Control
		of the Heat Shock Response 341
	17.5	Discussion 342
		Acknowledgments 343
		References 343
	18	Conclusions and Perspectives 347
		Evgeny Katz

Index 351

References 349