CONTENTS

PREFACE v		
ABOUT THE AUTHOR viii		
ADOUT THE ROTTON		
Chapter 1 DIFFERENCE EQUATIONS 1		
Introduction 1		
1. Time-Series Models 1		
2. Difference Equations and Their Solutions 7		
3. Solution by Iteration 10		
4. An Alternative Solution Methodology 14		
5. The Cobweb Model 18		
6. Solving Homogeneous Difference Equations 22		
7. Particular Solutions for Deterministic Processes 31		
8. The Method of Undetermined Coefficients 33		
9. Lag Operators 39		
10. Summary 42		
Questions and Exercises 43		
Endnotes 45		
Appendix 1.1: Imaginary Roots and de Moivre's Theorem 45		
Appendix 1.2: Characteristic Roots in Higher-Order Equations 47		
Chapter 2 STATIONARY TIME-SERIES MODELS 49		
Stochastic Difference Equation Models 49		
2. ARMA Models 52		
3. Stationarity 53		
4. Stationarity Restrictions for an ARMA(p, q) Model 57		
5. The Autocorrelation Function 62		
6. The Partial Autocorrelation Function 65		
7. Sample Autocorrelations of Stationary Series 69		
8. Box–Jenkins Model Selection 78		
9. Properties of Forecasts 81		
10. A Model of the Interest Rate Spread 89		

CONTENTS

	Seasonality 97
12.	Parameter Instability and Structural Change 103
	Summary and Conclusions 110
Que	stions and Exercises 110
End	notes 116
App	endix 2.1: Estimation of an MA(1) Process 116
App	endix 2.2: Model Selection Criteria 118
Cha	pter 3 MODELING VOLATILITY 121
1.	Economic Time Series: The Stylized Facts 121
2.	ARCH Processes 125
3.	ARCH and GARCH Estimates of Inflation 132
4.	Two Examples of GARCH Models 136
5.	A GARCH Model of Risk 141
6.	The ARCH-M Model 143
7.	Additional Properties of GARCH Processes 146
8.	Maximum-Likelihood Estimation of GARCH Models 152
9.	Other Models of Conditional Variance 154
10.	Estimating the NYSE International 100 Index 158
11.	Multivariate GARCH 165
12.	Summary and Conclusions 170
Que	stions and Exercises 172
End	notes 176
App	endix 3.1: Multivariate GARCH Models 176
Cha	pter 4 MODELS WITH TREND 181
1.	Deterministic and Stochastic Trends 181
2.	Removing the Trend 189
3.	Unit Roots and Regression Residuals 195
4.	The Monte Carlo Method 200
5.	Dickey–Fuller Tests 206
6.	Examples of the Dickey–Fuller Test 209
7.	Extensions of the Dickey–Fuller Test 215
8.	Structural Change 227
9.	Power and the Deterministic Regressors 234
10.	Tests with More Power 239
11.	Panel Unit Root Tests 244
12.	Trends and Univariate Decompositions 247

13. Summary and Conclusions 257		
Questions and Exercises 258		
Endnotes 262		
Appendix 4.1: The Bootstrap 263 Appendix 4.2: Determination of the Deterministic Regressors 267		
Appendix 4.2. Determination of the Deterministic Regressors 207		
Chapter 5 MULTIEQUATION TIME-SERIES MODELS 272		
1. Intervention Analysis 273		
2. Transfer Function Models 280		
3. Estimating a Transfer Function 290		
4. Limits to Structural Multivariate Estimation 294		
5. Introduction to VAR Analysis 297		
6. Estimation and Identification 303		
7. The Impulse Response Function 307		
8. Testing Hypotheses 315		
9. Example of a Simple VAR: Terrorism and Tourism in Spain 321		
10. Structural VARs 325		
11. Examples of Structural Decompositions 329		
12. The Blanchard–Quah Decomposition 338		
13. Decomposing Real and Nominal Exchange Rates: An Example 344		
14. Summary and Conclusions 347		
Questions and Exercises 349		
Endnotes 354		
Chapter 6 COINTEGRATION AND ERROR-CORRECTION		
MODELS 356		
1. Linear Combinations of Integrated Variables 357		
2. Cointegration and Common Trends 363		
3. Cointegration and Error Correction 365		
4. Testing for Cointegration: The Engle–Granger Methodology 373		
5. Illustrating the Engle-Granger Methodology 377		
6. Cointegration and Purchasing Power Parity 382		
7. Characteristic Roots, Rank, and Cointegration 385		
8. Hypothesis Testing 393		
8. Hypothesis Testing 3939. Illustrating the Johansen Methodology 401		
**		

CONTENTS

SUBJECT INDEX 503

Summary and Conclusions 412
Questions and Exercises 413
Endnotes 418
Appendix 6.1: Characteristic Roots, Stability, and Rank 419
Appendix 6.2: Inference on a Cointegrating Vector 425
NOW WEAD THAT GEDIES MODELS 400
Chapter 7 NONLINEAR TIME-SERIES MODELS 428
Linear Versus Nonlinear Adjustment 428
2. Simple Extensions of the ARMA Model 431
3. Pretesting in Nonlinearity 434
4. Threshold Autoregressive Models 439
5. Extensions of the TAR Model 445
6. Three Threshold Models 451
7. Smooth-Transition Models 457
8. Other Regime Switching Models 462
9. Estimates of STAR Models 466
10. Generalized Impulse Responses and Forecasting 470
11. Unit Roots and Nonlinearity 477
12. Summary and Conclusions 482
Questions and Exercises 483
Endnotes 486
STATISTICAL TABLES 488
A. Empirical Cumulative Distribution of the τ 488
B. Empirical Distribution of ϕ 489
C. Critical Values for the Engle-Granger Cointegration Test 490
D. Residual-Based Cointegration Test with <i>I</i> (1) and <i>I</i> (2) Variables 491
E. Empirical Distributions of the λ_{max} and λ_{trace} Statistics 492
F. Critical Values for $\beta_1 = 0$ in the Error-correction Model 493
G. Critical Values for Threshold Unit Roots 494
REFERENCES 495