HEAT TRANSFER

LESSONS WITH EXAMPLES SOLVED BY MATLAB

FIRST EDITION
BY TIEN-MO SHIH

Contents

Preface	XIX
Lesson 1: Introduction (What and Why)	1
1. Heat Transfer is an Old Subject 1-1 Partially True	i 2
1-2 Modifications of the Perception	2
2. What Is the Subject of Heat Transfer? 2-1 Definition	3
2-2 Second Income	3
3. Candle Burning for Your Birthday Party 3-1 Unknowns and Governing Equations	5 5
3-2 Solution Procedure	6
4. Why Is the Subject of Heat Transfer Important?4-1. Examples of Heat Transfer Problems in Daily Life	7 7
4-2 Examples of Heat Transfer Problems in Industrial Applications	8
5. Three Modes of Heat Transfer	8
6. Prerequisites	9
7. Structure of the Textbook	9
8. Summary	10
9. References	10
10. Exercise Problems	1 1
11. Appendix	11
A-1 Sum Up 1, 2, 3,, 100	11
A-2 Plot $f(x)$	12
A-3 Solve Three Linear Equations	12

Lesson 2: Introduction (Three Laws)	13
1. Fourier's Law	13
2. Law of Convective Heat Transfer	15
3. Wind-Chill Factor (WCF)	16
4. Stefan-Boltzmann Law of Radiative Emission	17
5. Sheet Energy Balance	18
6. Formation of Ice Layers on Car Windshield and Windows 6-1 Clear Sky Overnight	18 18
6-2 Cloudy Sky Overnight	20
7. Rule of Assume, Draw, and Write (ADW)	20
8. Summary	22
	22
9. References	
9. Reterences 10. Exercise Problems	22
	22 23
10. Exercise Problems	
10. Exercise Problems11. Appendix: Taylor's Series Expansion	23
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction	23 25
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i)	23 25 25
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System	25 25 26
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System	25 25 25 26 28
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs	25
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs 5. Severe Restrictions Imposed by Using Electrical Circuit Analogy	25 25 26 28 29
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs 5. Severe Restrictions Imposed by Using Electrical Circuit Analogy 6. Other Types of Boundary Conditions	25 25 25 26 28 29 30 30
 10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs 5. Severe Restrictions Imposed by Using Electrical Circuit Analogy 6. Other Types of Boundary Conditions 7. Thermal Properties of Common Materials — Table 1 	25
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs 5. Severe Restrictions Imposed by Using Electrical Circuit Analogy 6. Other Types of Boundary Conditions 7. Thermal Properties of Common Materials — Table 1 8. Summary	25
10. Exercise Problems 11. Appendix: Taylor's Series Expansion Lesson 3: One-Dimensional Steady State Heat Conduction 1. Governing Equation for T(x) or T(i) 2. A Single-Slab System 3. A Two-Slab System 4. Three or More Slabs 5. Severe Restrictions Imposed by Using Electrical Circuit Analogy 6. Other Types of Boundary Conditions 7. Thermal Properties of Common Materials — Table 1 8. Summary 9. References	25

sson 4: One-Dimensional Slabs with Heat Generation	35
1. Introduction	35
2. Governing Equations	36
3. Heat Conduction Related to Our Bodies	37
3-1 Estimate the Heat Generation of Our Bodies	37
3-2 A Coarse Grid System	39
3-3 Optimization	40
4. Discussions	41
4-1 Radiation Boundary Condition	41
4-2 Sketch the Trends and Check our Speculations	_
with Running the Matlab Code 4-3 Check the Global Energy Balance	42 43
5. Summary	43
6. References	43
7. Exercise Problems8. Appendix: A Matlab Code for Optimization	43
sson 5: One-Dimensional Steady-State Fins 1. Introduction	<u>47</u> 48
1-1 Main Purpose of Fins	48
1-2 Difference between 1-D Slabs and 1-D Fins	49
1-3 A Quick Estimate	49
2. Formal Analyses	
2-1 Governing Equation	51
2-2 A Standard Matlab Code Solving $T(x)$ and \boldsymbol{q}_b for a Fin	51 51
2-3 Equivalent Governing Differential Equation	
	51 51
3. Fins Losing Radiation to Clear Sky Overnight	51 51 52
4. A Seemingly Puzzling Phenomenon	51 51 52 52
, 3	51 51 52 52 54
4. A Seemingly Puzzling Phenomenon	51 51 52 52 54 55
4. A Seemingly Puzzling Phenomenon5. Fin Efficiency	51 51 52 52

7. Summary	58
8. References	58
9. Exercise Problems	58
10. Appendix	59
A-1 Explanation of the Seemingly Puzzling Phenomenon	59
A-2 Cubic Temperature Profile	60
A-3 Constraint of Fixed Fin Mass (or Volume)	62
A-4 Fin Bundles and Optimization	63
Lesson 6: Two-Dimensional Steady-State Conduction	65
Governing Equations	66
1-1 Derivation of the General Governing Equation	66
1-2 Three-Interior-Node System	67
1-3 A Special Case	70
2. A Standard Matlab Code Solving 2-D Steady-State Problems	70
3. Maximum Heat Loss from a Cylinder Surrounded by Insulation Materials 3-1. Governing Equation	70 71
3-2 An Optimization Problem	72
4. Summary	72
5. References	73
6. Exercise Problems	73
7. Appendix	74
A-1 Gauss-Seidel Method	74
A-2 A Standard 2-D Steady State Code	75
A-3 Optimization Problem in the Cylindrical Coordinates	77
Lesson 7: Lumped-Capacitance Models (Zero-Dimension Transient Conduction)	79
1. Introduction	79 70
1-1 Adjectives	79
1-2 Justifications	80

1-3 Examples	80
1-4 Objectives and Control Volumes	81
1-5 The Most Important Term and the First Law of Thermodynamics	81
2. Detailed Analyses of a Can-of-Coke Problem	32
2-1 Modeling	82
2-2 Assumptions in the Modeling	83
2-3 A Matlab Code Computing T(t) for the Can of Coke Problem	83
2-4 Discussions	84
3. When Is It Appropriate to Use the Lumped-Capacitance Model? 3-1 A Three-Node Example	85 85
3-2 An Analogy	86
4 A Simple Way to Relax the BI < 0.002 Constraint	87
5. Why Stirring the Food When We Fry It?	88
6. Summary	90
7. References	90
8. Exercise Problems	90
9. Appendix	91
A-1 Discussions of Adjectives	91
A-2 Comparisons of Three Cases	92
sson 8: One-Dimensional Transient Heat Conduction	95
1 Kitchen Is a Good Place to Learn Heat Transfer	95
1-1 Governing Equation of One-D Transient Heat Conduction	95
1-2 The Generic Core of One-D Transient Code	97
1-3 Various Boundary Conditions	97
1-4 A One-D Transient Matlab Code	97
1-5 Global Energy Balance	99
 Other One-D Transient Heat Conduction Applications Semi-Infinite Solids 	100 100
2-2. Revisit Fin Problems	100
2-3. Multi-layer Slabs with Heat Generation	102

3. Differential Governing Equation for One-D Transient Heat Conduction	103
4. Summary	103
5. References	103
6. Exercise Problems	103
7. Appendix	104
A-1 Semi-infinite Solids	104
A-2 Transient 1-D Fins	105
A-3 Example 4-1 Revisited	106
Lesson 9: Two-D Transient Heat Conduction	109
1. Governing Equation for T(i, j)	109
1-1 General Case	109
1-2 Special Cases	110
2. A Standard Matlab Code for Readers to Modify	113
3. Speculation on Steel Melting in Concrete Columns during 9/11	113
4. Possible Numerical Answers	114
5. Use a Two-D code to Solve One-D Transient Heat Conduction Problems	115
6. Exact Solutions for Validation of Codes	116
7. Advanced Heat Conduction Problems	117
7-1 Moving Interface (or called Stefan Problem)	117
7-2. Irregular Geometries	118
7-3. Non-Fourier Law (Hyperbolic-Type Heat Conduction Equation)	118
8. Summary	120
9. References	120
10. Exercise Problems	120
11. Appendix	121
A-1 A Standard Transient 2-D Code for Readers to Modify	121
A-2. Investigation of Transient 1-D Heat Conduction for a Steel Column	122
A-3. Investigation of Transient 2-D Heat Conduction for the Concrete Column	123

Lesson 10: Forced-Convection External Flows (I)	125
1. Soup-Blowing Problem	125
2. Boundary- Layer Flows	128
3. A Cubic Velocity Profile 3–1 Determine the coefficients	130 130
3-2 Application of Eq. (3)	131
4. Summary	133
5. References	133
6. Exercise Problems	133
7. Appendix: Momentum Balance over an Integral Segment	136
Lesson 11: Forced-Convection External Flows (II)	139
1. Nondimensionalization (abbreviated as Ndm)	139
2. Important Dimensionless Parameters in Heat Transfer	144
3. Derivation of Governing Equations	144
4. Categorization	145
5. Summary	146
6. References	146
7. Exercise Problems	146
8. Appendix: Steady-State Governing Equations A-1 Derivation of Governing Equation for u	148 148
A-2 Governing Equation for T	152

Lesson 12: Forced-Convection External Flows (III)	153
1. Preliminary	153
2 A Classical Approach Reported in the Literature	158
3. Steps to Find Heat Flux at the Wall (from the Similarity Solution)	156
4 The Nu Correlation and Some Discussions	157
5. Derivation of $Nu = G$ (Re. Pr) by Ndm	159
 Finding Eq. (6b) by Using a Quick and Approximate Method A Quick and Approximate Method 	160 160
6-2. A Matlab code generating the Nu correlation	161
7. An Example Regarding Convection and Radiation Combined	163
8. Possible Shortcomings of Nu Correlations	164
9. Brief Examination of Two More External Flows	164
10. Summary	165
11. References	165
12. Exercise Problems	166
13. Appendix [to find $f'(\eta)$ and the value of $f''(0)$] A-1 A Matlab Code for Solving the Blasius Similarity Equation	168 168
A-2 Table of η , f , f' , f' Distributions	169
A-3 Brief Explanations of the Table	171
Lessons 13: Internal Flows (I)—Hydrodynamic Aspect	173
Main Differences Between External Flows and Internal Flows	174
2. Two Regimes (or Regions)	174
3. A Coarse Grid to Find u, v, and p in the Developing Regime	176
4. An Analytical Procedure of Finding u(y) in the Fully Developed Regime	178
5. Application of the Results	182

6. Which Value Should We Use?	183
7. Ndm and Parameter Dependence	184
8. Summary	184
9. References	184
10. Exercise Problems	185
11. Appendix A Matlab Code for Finding u. v. and p in the Developing Regime	187
Lessons 14: Internal Flows (II)—Thermal Aspect	189
1. Definition of Tm	189
2. Definition of Thermally Fully Developed Flows	190
3 Justification of $\partial T/\partial x = constant$	191
4. A Beneficial Logical Exercise of Genetics	193
5. Summary	194
6. References	194
7. Exercise Problems	194
Lessons 15: Internal Flows (III)—Thermal Aspect	197
1. Derivation of Nu Value for Uniform q"s	197
2. Important Implications of Eq. (5)	199
3. Derivation of Nu value for uniform Ts	200
3-1 Justification	201
3-2 Solution Procedure	202

4. Let the Faucet Drip Slowly	204
5. Summary	207
6. References	207
7. Exercise Problems	207
8. Appendix: A Matlab Code Computing Nu for the Case of Uniform Ts	208
_esson 16: Free Convection	211
1. Definition of Free Convection	211
2. Definition of Buoyancy Force	212
2-1 Buoyancy Force on an Object	212
2-2 Buoyancy Force on a Control Volume in the Flow	213
2-3 Density Variations	214
3. The Main Difference Between Free Convection and Forced Convection	214
4. How Does Gr Number Arise?	215
5. $oldsymbol{\delta}_{\scriptscriptstyle T}$ and $oldsymbol{\delta}$ in Free Convection	216
 A Four-Cell Buoyancy-Driven Flow in a Square Enclosure 6-1 Description 	217 217
6-2 Derivation of Governing Equations	218
6-3 Discussions of the Result	219
7. Does Lighting a Fire in Fireplace Gain Net Energy for the House? 7-1 Governing Equations	219 220
7-2 Nomenclature in the Code	220
7-3 Matlab Code	220
8. Solar Radiation-Ice Turbine 8-1 Description of the Machine	221 221
8-2 Some Analyses	222

9. Free Convection over a Vertical Plate	223
10. Summary	224
11. References	224
12. Exercise Problems	224
13. Appendix A Matlab Code Computing Buoyancy-Driven Flows in Four-Cell Enclosures	224
Lesson 17: Turbulent Heat Convection	227
1. Introduction	228
1-1 Speed of Typical Flows	228
1-2 Frequencies of Turbulence and Molecular Collision	228
1-3 Superposition	228
2. A Fundamental Analysis	229
2-1 Governing Equations	229
2-2 Zero-Equation Turbulence Model	230
2-3 Discretized Governing Equation	231
3. Matlab Codes	232
3-1 Laminar Flows in Two-Parallel-Plate Channels	232
3-2 Turbulent Flows	233
3-3 Laminar Flows in Circular Tubes	233
4. Dimples on Golf Balls	234
5. Summary	235
6. References	235
7. Exercise Problems	235
8. Appendix	235
A-1 Laminar Flows in Circular Tubes	235
A-2 Fully Developed Turbulent Flows in Planar Channels	236

Lesson 18: Heat Exchangers and Other Heat Transfer Applications	239
1 Types of Heat Exchangers	239
2. A Fundamental Analysis	240
3. A Traditional Method to Find Heat Exchange	241
4. A Matlab Code	242
5. Comments on the Code	244
6. Other Applications in Heat Transfer	244
6-1 Combustion and Low-Temperature Chemical Reactions	244
6-2 Jets, Plumes, and Wakes	245
6-3 Optimization	245
6-4 Porous Media	245
6-5 Radiation with Participating Gases	245
6-6 Two-Phase Flows	245
7. Summary	246
8. References	246
9. Exercise Problems	247
Lesson 19: Radiation (I)	249
1. Fundamental Concepts	249
1-1 Main Difference between Radiation and Convection	250
1-2 Adjectives Used for Radiative Properties	250
2. Blackbody Radiation	251
2-1. Definition of a Blackbody Surface	251
2-2. Planck Spectral Distribution	252
2-3. Stefan-Boltzmann Law	253

3. A Coffee Drinking Tip	254
4. Fractions of Blackbody Emission	256
5. Summary	257
6 References	257
7 Exercise Problems	257
8. Appendix	258
A-1 Finding the Value of Stefan-Boltzmann Constant	258
A-2 Table 19-1 Fractions of Blackbody Emission	259
Lesson 20: Radiation (II)	261
1. Emissivity	261
Three Other Radiative Properties	263
3. Solar Constant and Effective Temperature of the Sun	264
4. Gray Surfaces	266
5. Kirchhoff's Law	268
6. Energy Balance over a Typical Plate	269
7. Greenhouse Effect (or Global Warming)	269
8. Steady-State Heat Flux Supplied Externally by Us	271
9. Find Steady-State Ts Analytically	272
10. Find Steady-State Ts Numerically	272
11. Find Unsteady Ts Not Involved with the Spectral Emissivity	273
12. Find Unsteady Ts Involved with the Spectral Emissivity	274
13. Find Unsteady Ts with Parameters Being Functions of Wavelength an	d Time 275
14. Summary	277
15. References	277
16. Exercise Problems	277

Lesson 21: Radiation (III)	281
View Factors (or Shape Factors, Configuration Factors)	281 282
1-1 Definition of the View Factor, F₁₂1-2 Reciprocity Rule	282
1-3 Energy Conservation Rule	282
1-4 View Factor for a Triangle	283
2. Black Triangular Enclosures	283
 Gray Triangular Enclosures 3-1 Definition of Radiosity, J 	285 286
4. Two Parallel Gray Plates with A1 = A2	288
5. Radiation Shield	289
6. Summary	290

7. References

8. Exercise Problems

290