Contents

Preface ix	3.8. Reaction Rates Near Equilibrium 104
Nomenclature xiii	3.9. Energy Regularity 110
	3.10. Classification of Multiple Reactions
1. Introduction 1	and Selectivity 111
1.1. Biological Cycle 1	3.11. Coupled Reactions 113
1.2. Green Chemistry 3	3.12. Reactor Mass Balances 116
1.3. Sustainability 5	3.13. Reaction Energy Balances 119
1.4. Biorefinery 6	3.14. Reactor Momentum Balance 126
1.5. Biotechnology and Bioprocess	3.15. Ideal Reactors 127
Engineering 9	3.16. Bioprocess Systems Optimization 129
1.6. Mathematics, Biology, and Engineering 11	3.17. Summary 132
1.7. The Story of Penicillin: the Dawn	Further Reading 136
of Bioprocess Engineering 12	Problems 137
1.8. Bioprocesses: Regulatory Constraints 15	
1.9. The Pillars of Bioprocess Kinetics	4. Batch Reactor 141
and Systems Engineering 17	4.1. Isothermal Batch Reactors 142
1.10. Summary 18	4.2. Batch Reactor Sizing 155
Further Reading 19	4.3. Non-Isothermal Batch
Problems 20	Reactors 159
	4.4. Numerical Solutions of Batch Reactor
An Overview of Biological Basics 21	Problems 165
	4.5. Summary 172
2.1. Cells and Organisms 21	Further Reading 173
2.2. Stem Cell 39	Problems 173
2.3. Cell Chemistry 41 2.4. Cell Feed 76	
2.4. Cell Feed 76 2.5. Summary 81	Ideal Flow Reactors 177
•	
Further Reading 83	5.1. Flow Rate, Residence Time, Space Time,
Problems 83	Space Velocity, Dilution Rate 178
4 O : (Ol : 1 D :	5.2. Plug Flow Reactor 180
An Overview of Chemical Reaction	5.3. Gasification and Fischer—Tropsch Technology 189
Analysis 85	5.4. Continuous Stirred Tank Reactor (CSTR)
3.1. Chemical Species 86	and Chemostat 194
3.2. Chemical Reactions 86	5.5. Multiple Reactors 206
3.3. Reaction Rates 90	5.6. Recycle Reactors 211
3.4. Approximate Reactions 95	5.7. Distributed Feed and Withdraw 215
3.5. Rate Coefficients 97	5.8. PFR or CSTR? 226
3.6. Stoichiometry 99	5.9. Steady Nonisothermal Flow Reactors 230
3.7. Yield and Yield Factor 102	5.10 Reactive Extraction 237

5.11. Graphic Solutions using Batch Concentration Data 239	Further Reading 384 Problems 384
5.12. Summary 242	
Further Reading 244	Chemical Reactions on Solid
Problems 245	Surfaces 391
6. Kinetic Theory and Reaction	9.1. Adsorption and Desorption 394
Kinetics 257	9.2. LHHW: Surface Reactions with
·	Rate-Controlling Steps 431
6.1. Elementary Kinetic Theory 258	9.3. Chemical Reactions on Nonideal
6.2. Collision Theory of Reaction Rates 264	Surfaces based on Distribution of Interaction Energy 448
6.3. Reaction Rate Analysis/Approximation 267	9.4. Chemical Reactions on Nonideal Surfaces
6.4. Unimolecular Reactions 270	with Multilayer Approximation 453
6.5. Free Radicals 272	9.5. Kinetics of Reactions on Surfaces Where
6.6. Kinetics of Acid Hydrolysis 274	the Solid Is Either a Product or
6.7. Summary 277	Reactant 454
Reading Materials 277	9.6. Decline of Surface Activity:
Problems 278	Catalyst Deactivation 460
	9.7. Summary 461
7. Parametric Estimation 281	Further Reading 467
7.1. Regression Models 282	Problems 467
7.2. Classification of Regression Models 286	, ,
7.3. Criteria for "Best" Fit and Simple	Cell Metabolism 473
Linear Regressions 287	
7.4. Correlation Coefficient 291	10.1. The Central Dogma 474
7.5. Common Abuses of Regression 293	10.2. DNA Replication: Preserving and
7.6. General Regression Analysis 294	Propagating the Cellular Message 477
7.7. Quality of Fit and Accuracy of Data 295	10.3. Transcription: Sending the Message 479
7.8. Batch Kinetic Data Interpretation:	10.4. Translation: Message to Product 485
Differential Regression Model 297	10.5. Metabolic Regulation 492 10.6. How a Cell Senses Its
7.9. Summary 317	Extracellular Environment 509
Further Reading 317	10.7. Major Metabolic Pathway 515
Problems 318	10.8. Overview of Biosynthesis 534
	10.9. Overview of Anaerobic Metabolism 536
8. Enzymes 323	10.10. Interrelationships of Metabolic
8.1. How Enzymes Work 327	Pathways 538
8.2. Enzyme Kinetics 334	10.11. Overview of Autotrophic Metabolism 541
8.3. Immobilized Enzyme Systems 354	10.12. Summary 543
8.4. Analysis of Bioprocess with Enzymatic	Further Reading 545
Reactions 359	Problems 546
8.5. Large-Scale Production of Enzymes 366	
8.6. Medical and Industrial Utilization	11 How Cells Grow 549
of Enzymes 368	
8.7. Kinetic Approximation: Why	11.1. Quantifying Biomass 550
Michaelis—Menten Equation Works 371	11.2. Batch Growth Patterns 553 11.3. Biomass Yield 558
8.8. Summary 383	11.7. Diomass Ticia 330

11.4. Approximate Growth Kinetics and	13.9. Summary 691
Monod Equation 562	Further Reading 692
11.5. Cell Death Rate 566	Problems 692
11.6. Cell Maintenance and	
Endogenous Metabolism 568	14 Evolution and Genetic
11.7. Product Yield 576	
11.8. Oxygen Demand for Aerobic	Engineering 695
Microorganisms 577	14.1. Mutations 696
11.9. Effect of Temperature 580	14.2. Selection 703
11.10. Effect of PH 582	14.3. Natural Mechanisms for Gene Transfer
11.11. Effect of Redox Potential 583	and Rearrangement 706
11.12. Effect of Electrolytes and Substrate	14.4. Techniques of Genetic Engineering 711
Concentration 583	14.5. Applications of Genetic Engineering 719
11.13. Heat Generation by Microbial	14.6. The Product and Process Decisions 721
Growth 584	14.7. Host–Vector System Selection 723
11.14. Overview of Microbial Growth Kinetic	14.8. Regulatory Constraints on Genetic
Models 585	Processes 733
11.15. Performance Analysis of Batch	14.9. Metabolic Engineering 736
Culture 596	14.10. Protein Engineering 738
11.16. Summary 599	14.11. Summary 739
Reading Materials 601	Further Reading 740
Problems 601	Problems 740
Continuous Cultivation 607	15. Sustainability: Humanity
121 0 1 (20	Perspective 743
12.1. Continuous Culture 608	-
12.2. Choosing the Cultivation Method 620	15.1. What is Sustainability? 744
12.3. Wastewater Treatment Process 634	15.2. Sustainability of Humanity 745
12.4. Immobilized Cell Systems 641	15.3. Water 748
12.5. Solid Substrate Fermentations 648	15.4. CO ₂ and Biomass 760
12.6. Summary 650	15.5. Woody Biomass Use and Desired
Further Reading 651	Sustainable State 766
Problems 652	15.6. Solar Energy 774
	15.7. Geothermal Energy 777
13. Fed-Batch Cultivation 663	15.8. Summary 778
	Further Reading 781
13.1. Design Equations 667	Problems 781
13.2. Ideal Isothermal Fed-Batch Reactors 671	
13.3. Isothermal Pseudo-Steady State	Sustainability and Stability 785
Fed-Batch Growth 676	· · · · · · · · · · · · · · · · · · ·
13.4. Advantages and Disadvantages of	16.1. Feed Stability of a CSTR 787
Fed-Batch Operations 684	16.2. Thermal Stability of a CSTR 801
13.5. Considerations in Implementing	16.3. Approaching Steady State 810
Fed-Batch Operations 686	16.4. Catalyst Instability 815
13.6. Examples of Fed-Batch Use in Industry 686	16.5. Genetic Instability 818
13.7. Parameters to Be Controlled or	16.6. Mixed Cultures 834
Monitored During Fed-Batch Operations 687	16.7. Summary 850
13.8. Parameters to Start and Finish the Feed	Further Reading 852
and Stop the Fed-Batch Fermentation 691	Problems 852

Mass Transfer Effects: Immobilized
and Heterogeneous Reaction
Systems 861
17.1. Molecular Diffusion and Mass
Transfer Rate 862
17.2. External Mass Transfer 864
17.3. Reactions in Isothermal Porous Catalysts 872
17.4. Mass Transfer Effects in Nonisothermal
Porous Particles 884
17.5. External and Internal Mass
Transfer Effects 894
17.6. Encapsulation Immobilization 897
17.7. External and Internal Surface Effects 899
17.8. The Shrinking Core Model 900
17.9. Summary 904
Further Reading 908
Problems 908

Bioreactor Design and Operation 915

- 18.1. Bioreactor Selection 916
- 18.2. Reactor Operational Mode Selection 92118.3. Aeration, Agitation, and Heat Transfer 923
- 18.4. Scale-up 927
- 18.5. Scale-down 930
- 18.6. Bioinstrumentation and Controls 93018.7. Sterilization of Process Fluids 932
- 18.8. Aseptic Operations and Practical Considerations for Bioreactor System
- Considerations for Bioreactor System
 Construction 946

 18.9. Effect of Imperfect Mixing 950
- 18.10. Summary 957
 Further Reading 961
 Problems 961

Index 965