TABLE OF CONTENTS

FOREWORD	xi
PREFACE	xiii
Chapter I	
INTRODUCTION TO COLD-FORMED STEEL DESIG	<u> </u>
1.1 General	1
1.2 Cold-formed steel sections	4
1.2.1 Types of cold-formed steel sections	4
1.2.2 Manufacturing	9
1.2.3 Some peculiar characteristics of cold-formed stee	l sections 12
1.3 Peculiar problems of cold-formed steel design	15
1.3.1 Buckling strength of cold-formed steel members	15
1.3.2 Torsional rigidity	20
1.3.3 Web crippling	21
1.3.4 Ductility and plastic design	22
1.3.5 Connections	22
1.3.6 Design assisted by testing	23
1.3.7 Design standards	23
1.3.7.1 North American Cold-formed Steel Specific	ation, 2001
Edition (AISI, 2001) and 2007 Edition (AISI, 2007)	23
1.3.7.2 Australian/New Zealand Standard – AS/NZ	S 4600,
2005 Edition (AS/NZS, 2005)	25
1.3.7.3 Eurocode 3 – Design of Steel Structures, Po	art 1.3 –
General Rules, Supplementary Rules for Cold-form	ed Thin
Gauge Members and Sheeting	26
1.3.8 Fire resistance	27
1.3.9 Corrosion	28

	1.3.10 Sustainability of cold-formed steel construction	28
1.4	Main applications of cold-formed steel	31
	1.4.1 Advantages of cold-formed steel in building construction	31
	1.4.1.1 Advantages during construction	31
	1.4.1.2 Advantages in service	32
	1.4.2 Applications	34
	apler I	
2.1	General	47
2.2	Limit state design	49
2.3	Actions on structures. Combinations of actions	53
	2.3.1 Verification at the Ultimate Limit State	54
	2.3.2 Verification at the Serviceability Limit State	57
	2.3.2.1 Deflections	60
	2.3.2.2 Dynamic effects	63
2.4	Materials	65
	2.4.1 General	65
	2.4.2 Structural steel	67
	2.4.2.1 Material properties of base material	67
	2.4.2.2 Material properties of cold-formed sections and	
	sheeting	68
	2.4.2.3 Thickness and thickness tolerances	72
2.5	Methods of analysis and design	73
	2.5.1 Methods of analysis – Global frame analysis	73
	2.5.2 Finite Element Methods (FEM) for analysis and design	77
	2.5.3 Design assited by testing	80
2.6	Imperfections	85
	2.6.1 Imperfections for global analysis of frames	85
	2.6.2 Imperfections for analysis of bracing systems	90
	2.6.3 Role of imperfections in advanced numerical simulation	91
	2.6.3.1 Section imperfections	93
	2.6.3.2 Residual stresses	94

3.1	General	97
	Properties of gross cross section	100
5.2	3.2.1 Nominal dimensions and idealisation of cross section	100
	3.2.2 Net geometric properties of perforated sections	104
	3.2.3 Dimensional limits of component walls of cold-formed	10.
	steel sections	107
	3.2.4 Modelling of cross section component walls for analysis	110
3.3	Flange curling	111
	Shear lag	114
	Local buckling	116
	3.5.1 Sectional buckling modes in thin-walled sections	116
	3.5.2 Elastic buckling of thin plates	118
3.6	Distortional buckling: analytical methods for predicting	
	stic distortional buckling stresses	129
	3.6.1 The method given in EN 1993-1-3:2006	130
3.7	Design against local and distortional buckling according to	
EN	1993-1-3	132
	3.7.1 General	132
	3.7.2 Plane elements without stiffeners	133
	3.7.3 Plane elements with edge or intermediate stiffeners	136
	3.7.3.1 General	136
	3.7.3.2 Plane elements with edge stiffeners	139
	3.7.3.2.1 Conditions	139
	3.7.3.3.2 General procedure	140
	3.7.3.3 Plane elements with intermediate stiffeners	162
	3.7.3.3.1 Conditions	162
	3.7.3.3.2 General procedure	163
	3.7.3.4 Trapezoidal sheeting profiles with intermediate	
	stiffeners	165
	3.7.3.4.1 General	165

3.7.3.4.2 Flanges with intermediate stiffeners	166
3.7.3.4.3 Webs with up to two intermediate stiffeners	169
3.7.3.4.4 Sheeting with flange stiffeners and web	
stiffeners	174
3.8 Resistance of cross sections	175
3.8.1 General	175
3.8.2 Axial tension	176
3.8.3 Axial compression	180
3.8.4 Bending moment	185
3.8.4.1 Elastic and elastoplastic resistance with yielding	
at the compressed flange	185
3.8.4.2 Elastic and elastoplastic resistance with yielding	
at the tension flange only	188
3.8.4.3 Effects of shear lag	188
3.8.5 Shear force	192
3.8.6 Torsional moment	194
3.8.7 Local transverse forces	203
3.8.7.1 General	203
3.8.7.2 Cross sections with a single unstiffened web	204
3.8.7.3 Cross sections with two or more unstiffened webs	214
3.8.7.4 Stiffened webs	217
3.8.8 Combined tension and bending	218
3.8.9 Combined compression and bending	220
3.8.10 Combined shear force, axial force and bending moment	224
3.8.11 Combined bending moment and local load or support	
reaction	231
Chapter 4	
BEHAVIOUR AND DESIGN RESISTANCE OF BAR MEMBERS	239
4.1 General	239
4.2 Compression members	241
4.2.1 Theoretical background	241
4 2 1 1 Ideal elastic members	241

	367
NG AS DIAPHRAGM	367
at serviceability limit states	363
design of purlins	346
otational restraint given by the sheeting	342
esign resistance	336
esign criteria	334
	333
beams restrained by sheeting according to	
g of beam-sheeting interaction	329
Constructional detailing and static system	324
l by sheeting	324
of structural components	311
eneral method for lateral and lateral-torsional	
3	303
beam-columns according to EN 1993-1-1	
al background	299
nbers in bending and axial compression	299
in building	291
mplified assessment methods for beams with	
	289
ateral-torsional buckling of members subject to	
cording to EN 1993-1-3	289
al background	277
n of bending members	277
orsional buckling and flexural-torsional buckling	262
lexural buckling	260
g to EN 1993-1-3	259
esistance of uniform members in compression.	
lass 4 sections: local-global interactive buckling	253
nperfect member	248

5.2	General design considerations for diaphragm action	372
	5.2.1 Conditions and restrictions for the use of stressed skin	
	design	372
	5.2.2 Types of diaphragms	375
	5.2.3 Irregular roof chape	377
	5.2.4 Design criteria	378
	5.2.4.1 Diaphragm flexibility	378
	5.2.4.2 Diaphragm strength	380
	5.2.5 Interaction of diaphragm action and rigid-jointed frames	381
	5.2.6 The danger of ignoring stressed skin action in	
	conventional construction	381
5.3	Design procedures for sheeting acting as diaphragm	382
	5.3.1 Design expressions for shear flexibility of diaphragm	382
	5.3.1.1 Sheeting spanning perpendicular to length of	
	diaphragm	382
	5.3.1.2 Sheeting spanning parallel to length of diaphragm	394
	5.3.2 Design expression for shear strength of diaphragms	397
	5.3.2.1 Sheeting spanning perpendicular to length of	
	diaphragms	397
	5.3.2.2 Sheeting spanning parallel to length of	
	diaphragm	402
	5.3.2.3 Buckling strength of sheeting in shear	404
	5.3.2.3.1 General	404
	5.3.2.3.2 Global shear buckling	405
	5.3.2.3.3 Local shear buckling	406
	5.3.2.4 Effect of combined loads	407
	5.3.3 Diaphragms with openings	407
	5.3.3.1 Discrete openings	408
	5.3.3.1.1 Requirements for discrete openings	408
	5.3.3.1.2 Flexibility of diaphragms with discrete	
	openings	409

	5.3.3.1.3 Strength of diaphragms with discrete	
	openings	409
	5.3.3.2 Strip openings	410
	5.3.4 Two skin envelopes	410
5.4	Interaction of the shear diaphragms with supporting framing	412
	5.4.1 General	412
	5.4.2 Elastic design of framing	413
	5.4.2.1 Rectangular frames: all frames loaded	413
	5.4.2.2 Pitched roof frames: all frames loaded	415
	5.4.2.3 One frame loaded	417
	5.4.3 Plastic design of framing	418
	5.4.3.1 Rectangular frames	418
	5.4.3.2 Pitched roof frames	419
	5.4.4 Modelling of diaphragm effect for frame analysis	420
5.5	Diaphragm action of sandwich panels	422
6.1	Introduction	437
	Design procedures for cassette sections	442
	6.2.1 General	442
	6.2.2 Axial compression	443
	6.2.3 Moment resistance	444
	6.2.3.1 Bending with the narrow flange in compression	
	(wide flange in tension)	444
	6.2.3.2 Bending with the wide flange in compression	447
	6.2.4 Behaviour in shear	449
6.3	Design procedures for cassette panels acting as diaphragm	453
	6.3.1 Cassettes spanning horizontal to the length of diaphragm	
	(liner tray shear panels)	453
	6.3.2 Some peculiar problems for design of wall panels of	
	cassettes spanning vertically to the length of diaphragm	455
6.4	Combined effects	457

Chapter 7

7.1	Introduction	463
7.2	Fastening techniques of cold-formed steel constructions	465
	7.2.1 Mechanical fasteners	465
	7.2.1.1 Mechanical fasteners for sections	466
	7.2.1.2 Mechanical fasteners for sheeting	477
	7.2.1.3 Mechanical fasteners for sandwich panels	478
	7.2.2 Welding	480
	7.2.2.1 Fusion arc welding	481
	7.2.2.2 Resistance welding	483
	7.2.2.3 Behaviour of cold-formed steel welds	484
	7.2.3 Fastening based on adhesive bonding	486
7.3	Mechanical properties of connections	487
7.4	Design of connections	489
	7.4.1 General design considerations	489
	7.4.2 Design of connections with mechanical fasteners	491
	7.4.2.1 General rules	492
	7.4.2.2 Design of bolted connections	498
	7.4.2.3 Design of connections with self-tapping screws	508
	7.4.2.4 Design of connections with blind rivets	519
	7.4.2.5 Design of connections with fired pins	520
	7.4.3 Design of welded connections	523
	7.4.3.1 General design and workmanship consideration	523
	7.4.3.2 Design of spot welds	524
	7.4.3.3 Fillet lap welds	526
	7.4.3.4 Arc spot welds	528
7.5	Design assisted by testing of cold-formed steel connections	536
	7.5.1 General	536
	7.5.2 Fasteners in shear	537
	7.5.3 Fasteners in tension	539
	7.5.4 Evaluation of test results	540

7.5.4.1 General	540
7.5.4.2 Evaluation of tests results according to Anne.	x A
of EN 1993-1-3	541
7.5.4.3 Evaluation of test results under static loads	
according to European Recommendations	546
Chapter 8	
8.1 General information	557
8.2 Introduction	557
	558
8.3 Construction systems	
8.4 Stick built constructions	563
8.4.1 Foundation	563
8.4.2 Floors	564
8.4.3 Wall studs	567
8.4.4 Roof	569
8.4.5 On-site construction	570
8.5 Conceptual design	573
8.5.1 Architectural design	573
8.5.2 Thermal insulation	577
8.5.3 Soundproofing	578
8.5.4 Fire resistance	581
8.5.5 Vibration	583
8.5.6 Durability	584
8.5.7 Sustainability	587
8.6 Structural design	589
8.6.1 Structural conception	589
8.6.2 Design under vertical loads	592
8.6.2.1 Design of floors	593
8.6.2.2 Design of walls	595
8.6.2.3 Sheathing-braced design for vertical loads	597
8.6.3 Design under horizontal loads	598
8.6.3.1 "All-steel" lateral bracing	599
8.6.3.2 Structural behaviour of sheathed diaphragm	601
8.6.4 Specific design manuals	606

8.6.4.1 Prescriptive method for residential cold-formed	
steel framing	606
8.6.4.2 Workpack design for steel house	607
8.7 Case study: residential building	608
8.7.1 Architectural design	608
8.7.2 Conceptual design	611
8.7.2.1 Floor assembly	612
8.7.2.2 Wall assembly	614
8.7.3 Structural design	617
8.7.3.1 Reference codes	617
8.7.3.2 Loads	617
8.7.4 Design checking	620
8.7.4.1 Joist	620
8.7.4.2 Studs	624
8.7.5 Details	626
REFERENCES	(3.5.4