Contents

Preface to the third edition 7
Acknowledgements to the third edition 7
Figure key 8
SI/mass unit conversions 9

Part 1 Acids, bases and pH

- 1 Acids, bases and hydrogen ions (protons) 10
- 2 Understanding pH 12
- 3 Production and removal of protons into and from the blood 14
- 4 Metabolic alkalosis and metabolic acidosis 16
- 5 Respiratory alkalosis and respiratory acidosis 18

Part 2 Structure of amino acids and proteins

- 6 Amino acids and the primary structure of proteins 20
- 7 Secondary structure of proteins 22
- 8 Tertiary and quaternary structure and collagen 24

Part 3 Formation of ATP: oxidation and reduction reactions

- 9 Oxidation/reduction reactions, coenzymes and prosthetic groups 26
- 10 Anaerobic production of ATP by substrate-level phosphorylation, from phosphocreatine and by the adenylate kinase (myokinase) reaction 28
- 11 Aerobic production of ATP 30
- 12 Biosynthesis of ATP by oxidative phosphorylation I 32
- 13 Biosynthesis of ATP by oxidative phosphorylation II 34
- 14 What happens when protons or electrons leak from the respiratory chain? 36
- 15 Free radicals, reactive oxygen species and oxidative damage 38
- 16 Aerobic oxidation of glucose to provide energy as ATP 40
- 17 Anaerobic oxidation of glucose by glycolysis to form ATP and lactate 42
- 18 Anaerobic glycolysis in red blood cells, 2,3-BPG (2,3-DPG) and the Bohr effect 44

Part 4 Carbohydrates

- 19 Carbohydrates 46
- 20 Absorption of carbohydrates and metabolism of galactose 48
- 21 Fate of glucose in liver: glycogenesis and lipogenesis 50
- 22 Fructose metabolism 52
- 23 Glucose homeostasis 54
- 24 Glucose-stimulated secretion of insulin from β-cells 56
- 25 Regulation of glycogen metabolism 58
- 26 Glycogen breakdown (glycogenolysis) and glycogen storage diseases 60
- 27 Insulin signal transduction and diabetes mellitus 62
- 28 Diabetes mellitus 64
- 29 Alcohol metabolism: hypoglycaemia, hyperlactataemia and steatosis 66

Part 5 Enzymes and regulation of pathways

- 30 Enzymes: nomenclature, kinetics and inhibitors 68
- 31 Regulation of enzyme activity 70

- 32 Regulation of glycolysis and Krebs cycle 72
- 33 Oxidation of fatty acids to produce ATP in muscle and ketone bodies in liver 74
- 34 Regulation of lipolysis, β-oxidation, ketogenesis and gluconeogenesis 76

Part 6 Lipids and lipid metabolism

- 35 Structure of lipids 78
- 36 Phospholipids I: phospholipids and sphingolipids 80
- 37 Phospholipids II: micelles, liposomes, lipoproteins and membranes 82
- 38 Metabolism of carbohydrate to cholesterol 84
- 39 VLDL and LDL metabolism I: "forward" cholesterol transport 86
- 40 VLDL and LDL metabolism II: endogenous triacylglycerol transport 88
- 41 HDL metabolism: "reverse" cholesterol transport 90
- 42 Absorption and disposal of dietary triacylglycerols and cholesterol by chylomicrons 92
- 43 Steroid hormones: aldosterone, cortisol, androgens and oestrogens 94

Part 7 Metabolism of amino acids and porphyrins

- 44 Urea cycle and overview of amino acid catabolism 96
- 45 Non-essential and essential amino acids 98
- 46 Amino acid metabolism: to energy as ATP; to glucose and ketone bodies 100
- 47 Amino acid disorders: maple syrup urine disease, homocystinuria, cystinuria, alkaptonuria and albinism 102
- 48 Phenylalanine and tyrosine metabolism in health and disease 104
- 49 Products of tryptophan and histidine metabolism 106
- 50 Haem, bilirubin and porphyria 108

Part 8 Vitamins

- 51 Fat-soluble vitamins I: vitamins A and D 110
- 52 Fat-soluble vitamins II: vitamins E and K 112
- 53 Water-soluble vitamins I: thiamin, riboflavin, niacin and pantothenate 114
- 54 Water-soluble vitamins II: pyridoxal phosphate (B₆) 116
- 55 Water-soluble vitamins III: folate and vitamin B₁₂ 118
- 56 Water-soluble vitamins IV: biotin and vitamin C 120

Part 9 Molecular biology

- 57 The cell cycle 122
- 58 Pyrimidine metabolism 124
- 59 Purine metabolism 126
- 60 Structure of DNA 128
- 61 The "central dogma" of molecular biology 130
- 62 Organisation of DNA in chromosomes 132
- 63 Replication of DNA (part 1) 134
- 64 Replication of DNA (part 2) 136
- 65 DNA damage and repair 138
- 66 Transcription of DNA to make messenger RNA (part 1) 140
- 67 Transcription of DNA to make messenger RNA (part 2) 142

68 Transcription of DNA to make transfer RNA 144	Part 10 Diagnostic clinical biochemistry
69 Transcription of DNA to make ribosomal RNA 146	72 Diagnostic clinical biochemistry (with Dr J. W. Wright FRCP,
70 Translation and protein synthesis 148	MRCPath) 152
71 Comparison of DNA replication, DNA transcription and protein	
synthesis in eukaryotes and prokaryotes 150	Index 154