Brief Contents

of the Ocean Floor

CHAPTER 1 **CHAPTER 14** An Introduction to Geology Convergent Boundaries: Origin of Mountains 381 CHAPTER 2 Plate Tectonics: A Scientific Revolution CHAPTER 15 Unfolds Mass Wasting: The Work of Gravity 405 CHAPTER 3 CHAPTER 16 Matter and Minerals 73 Running Water 429 CHAPTER 4 CHAPTER 17 Magma, Igneous Rocks, and Intrusive Groundwater Activity 107 CHAPTER 18 CHAPTER 5 Glaciers and Glaciation 489 Volcanoes and Volcanic Hazards CHAPTER 19 Deserts and Winds 519 **CHAPTER 6** Weathering and Soil **CHAPTER 20** CHAPTER 7 Shorelines 541 Sedimentary Rocks CHAPTER 21 CHAPTER 8 Global Climate Change 575 Metamorphism and Metamorphic Rocks CHAPTER 22 Earth's Evolution through Geologic Time CHAPTER 9 Geologic Time CHAPTER 23 CHAPTER 10 Energy and Mineral Resources 643 Crustal Deformation 279 CHAPTER 24 CHAPTER 11 Planetary Geology 671 Earthquakes and Earthquake Hazards 303 APPENDIX A CHAPTER 12 Metric and English Units Compared Earth's Interior 333 GLOSSARY 704 CHAPTER 13 INDEX 716 Divergent Boundaries: Origin and Evolution

GEODe: Earth Contents

CH 1 An Introduction to Geology

Earth's Layered Structure Rock Cycle Chapter Quiz

CH 2 Plate Tectonics

Introduction Divergent Boundaries Convergent Boundaries Transform Fault Boundaries Formation and Breakup of Pangaea Chapter Quiz

CH 3 Matter and Minerals

Introduction Physical Properties of Minerals Mineral Groups Chapter Quiz

CH 4 Igneous Rocks

Introduction to Igneous Rocks Igneous Compositions Igneous Textures Naming Igneous Rocks Intrusive Igneous Activity Chapter Quiz

CH 5 Volcanoes

The Nature of Volcanic Eruptions Materials Extruded during an Eruption Volcanic Structures and Eruptive Styles Chapter Quiz

CH 6 Weathering and Soil

Earth's External Processes Types of Weathering Mechanical Weathering Chemical Weathering Rates of Weathering Chapter Quiz

CH 7 Sedimentary Rocks

Introduction to Sedimentary Rocks Types of Sedimentary Rocks Sedimentary Environments Chapter Quiz

CH 8 Metamorphic Rocks

Introduction to Metamorphic Rocks Agents of Metamorphism Textural and Mineralogical Changes Common Metamorphic Rocks Chapter Quiz

CH 9 Geologic Time

Relative Dating—Key Principles Dating with Radioactivity Geologic Time Scale Chapter Quiz

CH 10 Crustal Deformation

Deformation Folds Faults and Fractures Chapter Quiz

CH 11 Earthquakes

What is an Earthquake? Seismology Locating the Source of an Earthquake Earthquakes at Plate Boundaries Chapter Quiz

CH 12 Earth's Interior

Earth's Lavered Structure Chapter Quiz

CH 13 Divergent Boundaries

Mapping the Ocean Floor Features of the Ocean Floor Oceanic Ridges and Seafloor Spreading Chapter Quiz

CH 14 Convergent Boundaries

Continental Collisions Crustal Fragments and Mountain Building Chapter Quiz

CH 15 Mass Wasting

Controls and Triggers of Mass Wasting Mass Wasting Processes Chapter Quiz

CH 16 Running Water

Hydrologic Cycle Stream Characteristics Reviewing Valleys and Streamrelated Features Chapter Quiz

CH 17 Groundwater

Importance and Distribution Springs and Wells Chapter Quiz

CH 18 Glaciers and Glaciation

Introduction Budget of a Glacier Reviewing Glacial Features Chapter Quiz

CH 19 Deserts and Winds

Distribution and Causes of Dry Lands Common Misconceptions About Deserts Reviewing Landforms and Landscapes Chapter Quiz

CH 20 Shorelines

Waves and Beaches Wave Erosion Chapter Quiz

Table of Contents

Preface xvi

1

An Introduction to Geology

The Science of Geology 2

Geology, People, and the Environment 2

Some Historical Notes About Geology 5

Catastrophism 5

Professional Profile Career Opportunities in the Geosciences 6

The Birth of Modern Geology 6

Geology Today 7

Geologic Time 7

The Magnitude of Geologic Time 7

Relative Dating and the Geologic Time Scale 8

The Nature of Scientific Inquiry 9

Hypothesis 12

Theory 12

Scientific Methods 12

Plate Tectonics and Scientific Inquiry 14

Earth's Spheres 14

Hydrosphere 15

Atmosphere 15

Biosphere 16

Geosphere 16

Earth as a System 17

Earth System Science 17

The Earth System 19

Early Evolution of Earth 20

Origin of Planet Earth 20

Formation of Earth's Layered Structure 22

Earth's Internal Structure 23

Earth's Crust 23

Earth's Mantle 24

Earth's Core 24

How Do We Know What We Know? 24

The Face of Earth 25

Major Features of the Continents 25

Major Features of the Ocean Floor 28

Rocks and the Rock Cycle 29

Basic Rock Types 29

The Rock Cycle: One of Earth's Subsystems 32

Box 1.1 Understanding Earth Studying Earth from Space 11

Box 1.2 Understanding Earth Do Glaciers Move?

An Application of the Scientific Method 13

2

Plate Tectonics: A Scientific Revolution Unfolds 39

Continental Drift: An idea before its Time 40

Evidence: The Continental Jigsaw Puzzle 40

Evidence: Fossils Match across the Seas 41

Evidence: Rock Types and Geologic Features 43
Evidence: Ancient Climates 44

The Great Debate 45

Rejection of the Continental Drift Hypothesis 45 Continental Drift and the Scientific Method 45

Continental Drift and Paleomagnetism 45

Earth's Magnetic Field and Fossil Magnetism 45

Apparent Polar Wandering 46

A Scientific Revolution Begins 48

The Seafloor-Spreading Hypothesis 48

Magnetic Reversals: Evidence for Seafloor Spreading 49

Plate Tectonics 51

Earth's Major Plates 51

Plate Boundaries 54

Divergent Boundaries 55

Oceanic Ridges and Seafloor Spreading 55

Continental Rifting 56

Convergent Boundaries 56

Oceanic-Continental Convergence 57

Oceanic-Oceanic Convergence 58

Continental-Continental Convergence 59

Transform Fault Boundaries 60

How do Plates and Plate Boundaries Change? 62

Testing the Plate Tectonics Model 62

Evidence from Ocean Drilling 62

Hot Spots and Mantle Plumes 64

How is Plate Motion Measured? 65

W 10 1 late Wellon Weadarda.

Mantle Plumes and Plate Motions 65

Paleomagnetism and Plate Motions 66

Measuring Plate Motion from Space 67

What Drives Plate Motions? 67

Plate-Mantle Convection 67

Forces that Drive Plate Motion 68

Models of Plate-Mantle Convection 68

The Importance of the Plate Tectonics Theory 69 **Box 2.1 Understanding Earth** Alfred Wegener (1880–1930):

Polar Explorer and Visionary 47

Box 2.2 Understanding Earth Priority in the Sciences 54
Box 2.3 Understanding Earth The Breakup of Pangaea 63

3

Matter and Minerals 73

Minerals: Building Blocks of Rocks 74

Matter and Minerals 00

Atoms: Building Blocks of Minerals 76

Properties of Protons, Neutrons, and Electrons 76 Elements: Defined by Their Number of Protons 77

Why Atoms Bond 77

Ionic Bonds: Electrons Transferred 79 Covalent Bonds: Electrons Shared 80 Metallic Bonds: Electrons Free to Move 80 Other Bonds: Hybrids 80

Isotopes and Radioactive Decay 81

Crystals and Crystallization 81

How Do Minerals Form? 81

Crystal Structures 82

Compositional Variations in Minerals 83

Structural Variations in Minerals 86

Physical Properties of Minerals 87

Optical Properties 87

Crystal Shape or Habit 88

Mineral Strength 88

Density and Specific Gravity 89

Other Properties of Minerals 91

How Are Minerals Named and Classified? 91

Classifying Minerals 92

Major Mineral Classes 92

The Silicates 93

The Silicon–Oxygen Tetrahedron 93

Joining Silicate Structures 94

Common Silicate Minerals 95

The Light Silicates 95

The Dark Silicates 98

Important Nonsilicate Minerals 99

Box 3.1 People and the Environment Making Glass from Minerals 76

viii

Box 3.2 People and the Environment Asbestos: What Are the Risks? 85

Box 3.3 Understanding Earth Gemstones 102

Magma, Igneous Rocks, and Intrusive Activity 107

Magma: the Parent Material of Igneous Rock 108

The Nature of Magma 108

From Magma to Crystalline Rock 108

Igneous Processes 110

Igneous Compositions 110

Granitic (Felsic) Versus Basaltic (Mafic) Compositions 110 Other Compositional Groups 111

Silica Content as an Indicator of Composition 111

Igneous Textures: What can They Tell Us? 112

Types of Igneous Textures 113

Naming Igneous Rocks 115

Felsic (Granitic) Igneous Rocks 116

Intermediate (Andesitic) Igneous Rocks 119

Mafic (Basaltic) Igneous Rocks 119

Pyroclastic Rocks 119

Origin of Magma 120

Generating Magma from Solid Rock 120

How Magmas Evolve 122

Bowen's Reaction Series and the Composition of Igneous Rocks 122

Assimilation and Magma Mixing 123

Partial Melting and Magma Composition 124

Formation of Basaltic Magma 124

Formation of Andesitic and Granitic Magmas 126

Intrusive Igneous Activity 128

Nature of Intrusive Bodies 128

Tablular Intrusive Bodies: Dikes and Sills 128

Massive Intrusive Bodies: Batholiths and Stocks 131

Box 4.1 Understanding Earth Thin Sections and Rock

Identification 118

Box 4.2 Understanding Earth A Closer Look at Bowen's

Reaction Series 127

5

Volcanoes and Volcanic Hazards 13

The Nature of Volcanic Eruptions 138

Factors Affecting Viscosity 138

Why Do Volcanoes Erupt? 140

Materials Extruded During an Eruption 142

Lava Flows 142

Gases 143

Pyroclastic Materials 144

Volcanic Structures and Eruptive Styles 146

Anatomy of a Volcano 146

Shield Volcanoes 147

Cinder Cones 149

Composite Cones 151

Living in the Shadow of A Composite Cone 152 Eruption of Vesuvius AD 79 152 Nuée Ardente: A Deadly Pyroclastic Flow 153 Lahars: Mudflows on Active and Inactive Cones 154 Other Volcanic Landforms 156 Calderas 156 Fissure Eruptions and Basalt Plateaus 157 Lava Domes 159 Volcanic Pipes and Necks 160 Plate Tectonics and Volcanic Activity 160 Volcanism at Convergent Plate Boundaries 162 Volcanism at Divergent Plate Boundaries 162 Intraplate Volcanism 163 Professional Profile Chris Eisinger Studying Active Volcanoes 163 Living with Volcanoes 167 Volcanic Hazards 167 Monitoring Volcanic Activity 168 Box 5.1 Understanding Earth Anatomy of an Eruption 141 Box 5.2 Earth as a System Volcanic Air Pollution-A Hazard in Hawaii 147 Box 5.3 People and the Environment The Lost Continent of Atlantis 155 Weathering and Soil 173 Earth's External Processes 174 Weathering 174 Mechanical Weathering 176 Frost Wedging 176 Salt Crystal Growth 176 Sheeting 176 Thermal Expansion 178 Biological Activity 178 Chemical Weathering 179 Dissolution 179 Oxidation 181 Hydrolysis 181 Spheroidal Weathering 184 Rates of Weathering 185 Rock Characteristics 185 Climate 185 Differential Weathering 186 SOIL 186

An Interface in the Earth System 186

What is Soil? 187

Controls of Soil Formation 187

Parent Material 187

Plants and Animals 188 Topography 189 The Soil Profile 189 Classifying Soils 191

Time 188 Climate 188 EARYH EARTH

Soil Erosion 191

How Soil is Eroded 191

Rates of Erosion 194

Sedimenation and Chemical Pollution 195

Box 6.1 Understanding Earth The Old Man of the Mountain 178

Box 6.2 Earth as a System Acid Precipitation—

A Human Impact on the Earth System 182

Box 6.3 People and the Environment Clearing the Tropical Rain Forest—The Impact on it's Soils 193

7

Sedimentary Rocks 199

The Importance of Sedimentary Rocks 200 Origins of Sedimentary Rock 200

Detrital Sedimentary Rocks 202

Shale 203

Sandstone 204

Conglomerate and Breccia 206

Chemical Sedimentary Rocks 207

Limestone 208

Dolostone 210

Chert 210

Evaporites 210

Coal—An Organic Sedimentary Rock 212

Turning Sediment Into Sedimentary Rock: Diagenesis and Lithification 213

Classification of Sedimentary Rocks 214

Sedimentary Environments 216

Types of Sedimentary Environments 217

Sedimentary Facies 220

Sedimentary Structures 221

Box 7.1 Earth as a System The Carbon Cycle

and Sedimentary Rocks 214

Box 7.2 People and the Environment Our Threatened Coral Reefs 217

8

Metamorphism and Metamorphic Rocks 229

What is Metamorphism? 230

What Drives Metamorphism? 230

Heat as a Metamorphic Agent 231

Confining Pressure and Differential Stress 233

Chemically Active Fluids 234

The Importance of Parent Rock 234

Metamorphic Textures 235

Foliation 235

Foliated Textures 236

Other Metamorphic Textures 237

Common Metamorphic Rocks 238

Foliated Rocks 238

Nonfoliated Rocks 240

Metamorphic Environments 241

Contact or Thermal Metamorphism 241

Hydrothermal Metamorphism 242

Burial and Subduction Zone Metamorphism 244

Regional Metamorphism 244

Other Metamorphic Environments 244

Metamorphic Zones 245

Textural Variations 245

Index Minerals and Metamorphic Grade 246

Interpreting Metamorphic Environments 248

Box 8.1 Understanding Earth Impact Metamorphism

and Tektites 247

Box 8.2 Understanding Earth Mineral Stability 250

9

Geologic Time 255

Geology Needs A Time Scale 256

Relative Dating—Key Principles 256

Law of Superposition 257

Principle of Original Horizontality 257

Principle of Cross-Cutting Relationships 258

Inclusions 258

Unconformities 258

Using Relative Dating Principles 261

Correlation of Rock Layers 261

Fossils: Evidence of Past Life 262

Types of Fossils 265

Conditions Favoring Preservation 266

Fossils and Correlation 267

Dating With Radioactivity 267

Reviewing Basic Atomic Structure 268

Radioactivity 268

Half-Life 269

Radiometric Dating 269

Dating with Carbon-14 270

Importance of Radiometric Dating 270

The Geologic Time Scale 271

Structure of the Time Scale 271

Precambrian Time 271

Difficulties In Dating the Geologic Time Scale 273

Box 9.1 Understanding Earth Applying Relative Dating

Principles to the Lunar Surface 264

Box 9.2 Understanding Earth Terminology

and the Geologic Time Scale 273

10

Crustal Deformation 279

Structural Geology: A Study of Earth's Architecture 280

Deformation, Stress, and Strain 280

Stress: The Force that Deforms Rocks 280

Strain: A Change in Shape Caused by Stress 281

How Rocks Deform 282

Elastic, Brittle, and Ductile Deformation 283

Factors that Affect Rock Strength 284

Structures Formed by Ductile Deformation 285

Folds 285

Professional Profile Michael Collier Feet in the Fire:

Communicating Geologist 286

Structures Formed by Brittle Deformation 290

Faults 292

Dip-Slip Faults 292

Strike-Slip Faults 294

Joints 296

Mapping Geologic Structures 297

Strike and Dip 298

Box 10.1 Understanding Earth Naming Local Rock Units 298

11

Earthquakes and Earthquake Hazards 303

What is an Earthquake? 304

Discovering the Causes of Earthquakes 305

Aftershocks and Foreshocks 306

Faults, Faulting, and Earthquakes 307

The Nature of Faults 307

Fault Rupture and Propagation 308

Seismology: The Study of Earthquake Waves 309

Professional Profile Andrea Donnellan Earthquake Forecaster 309

Locating the Source of an Earthquake 312

Measuring the Size of Earthquakes 313

Intensity Scales 313

Magnitude Scales 314

Earthquake Belts and Plate Boundaries 316

Earthquake Destruction 317

Destruction from Seismic Vibrations 317

Landslides and Ground Subsidence 320

Fire 320

What is A Tsunami? 320

Can Earthquakes Be Predicted? 322

Short-Range Predictions 322

Long-Range Forecasts 323

Seismic Risk On the San Andreas Fault 326

Farthquakes: Evidence For Plate Tectonics at Plate Boundaries 327

Box 11.1 Understanding Earth Wave Amplification

and Seismic Risks 318

Box 11.2 People and the Environment Earthquakes East of the Rockies 329

12

Farth's Interior 333

Gravity and Lavered Planets 334

Probing Earth's Interior: "Seeing" Seismic Waves 334

Earth's Layers 337

Earth's Crust 337

Farth's Mantle 339

Earth's Core 341

Earth's Temperature 342

How Did Earth Get So Hot? 343

Heat Flow 343

Earth's Temperature Profile 344

Earth's Three-Dimensional Structure 345

Earth's Gravity 346

Seismic Tomography 347

Earth's Magnetic Field 347

Box 12.1 Understanding Earth Re-creating the Deep Earth 338
Box 12.2 EARTH AS A SYSTEM Global Dynamic Connections 350

13

Divergent Boundaries: Origin and Evolution of the Ocean Floor

An Emerging Picture of the Ocean Floor 356

Mapping the Seafloor 356

Viewing the Ocean Floor From Space 358

Provinces of the Ocean Floor 358

Continental Margins 358

Passive Continental Margins 358

Professional Profile Susan DeBari Studying the Deep Roots of

Volcanic Arcs 359

Active Continental Margins 361

Features of Deep-Ocean Basins 362

Deep-Ocean Trenches 362

Abyssal Plains 362

Seamounts, Guyots, and Oceanic Plateaus 363

Anatomy of the Oceanic Ridge 365

Oceanic Ridges and Seafloor Spreading 366

Seafloor Spreading 366

Why are Oceanic Ridges Elevated? 367

Spreading Rates and Ridge Topography 367

The Nature of Oceanic Crust 367

How does Oceanic Crust Form? 368

Interactions between Seawater and Oceanic Crust 369

Continental Rifting: The Birth of a New Ocean Basin 371

Evolution of an Ocean Basin 371

Mechanisms for Continental Rifting 373

Destruction of Oceanic Lithosphere 375

Why Oceanic Lithosphere Subducts 375

Subducting Plates: The Demise of an Ocean Basin 376

Box 13.1 Understanding Earth: Explaining Coral Atolls— Darwin's Hypothesis 364

Box 13.2 Earth as a System: Deep-Sea Hydrothermal Vents 370

14

Convergent Boundaries: Origin of Mountains 381

Mountain Building 382

Convergence and Subducting Plates 384

Major Features of Subduction Zones 384

Dynamics at Subduction Zones 385

Subduction and Mountain Building 386

Volcanic Island Arcs 386

Mountain Building along Andean-type Margins 386

Sierra Nevada, Coast Ranges, and Great Valley 389

Collisional Mountain Belts 390

Terranes and Mountain Building 390

Continental Collisions 391

The Himalayas 391

The Appalachians 392

Fault-Block Mountains 394

Basin and Range Province 396

Vertical Movements of the Crust 399

Isostasy 399

Mantle Convection: A Cause of Vertical Crustal Movement 399

Box 14.1 Understanding Earth: Earthquakes in the Pacific

Northwest 387

Box 14.2 Understanding Earth: The Southern Rockies 398
Box 14.3 Understanding Earth: Do Mountains Have Roots?
401

15

Mass Wasting: The Work of Gravity 405

Landslides As Natural Disasters 406

Mass Wasting and Landform Development 406

The Role of Mass Wasting 406 Slopes Change Through Time 407

Controls and Triggers of Mass Wasting 407

The Role of Water 408

Oversteepened Slopes 409

Removal of Vegetation 409

Earthquakes as Triggers 411

Landslides without Triggers? 412

The Potential for Landslides 413

Classification of Mass-Wasting Processes 413

Type of Material 413

Type of Motion 413

Rate of Movement 414

Slump 416

Debris Flows in Semiarid Regions 419

Lahars 419

Professional Profile Bob Rasley Mass Wasting Specialist 421

Earthflow 421

Slow Movements 422

Creep 422

Solifluction 422

The Sensitive Permafrost Landscape 423

Submarine Landslides 424

Box 15.1 People and the Environment Landslide Hazards

La Conchita, California 410

Box 15.2 People and the Environment The Vaiont Dam Disaster 415

xii

16

Running Water 429

Earth as a System: The Hydrologic Cycle 430

Running Water 432

Drainage Basins 432

River Systems 433

Streamflow 434

Flow Velocity 434

Gradient and Channel Chracteristics 435

Discharge 435

Changes Downstream 435

The Work of Running Water 436

Stream Erosion 436

Transport of Sediment by Streams 437

Deposition of Sediment by Streams 439

Stream Channels 439

Bedrock Channels 440

Alluvial Channels 440

Base Level and Graded Streams 441

Shaping Stream Valleys 443

Valley Deepening 443

Valley Widening 444

Incised Meanders and Stream Terraces 445

Depositional Landforms 445

Deltas 446

The Mississippi Delta 447

Natural Levees 449

Alluvial Fans 449

Drainage Patterns 449

Formation of a Water Gap 450

Headward Erosion and Stream Piracy 450

Floods and Flood Control 452

Types of Floods 452

Flood Control 454

Box 16.1 People and the Environment: Coastal Wetlands

Vanishing on the Mississippi Delta 451

Box 16.2 People and the Environment: Flash Floods 455

17

Groundwater 4

Importance of Groundwater 462

Groundwater—A Basic Resource 464

Distribution of Groundwater 465

The Water Table 466

Variations in the Water Table 466

Interaction Between Groundwater and Streams 467

Factors Influencing the Storage and Movement of Groundwater 467

Porosity 467

Permeability, Aquitards, and Aquifers 468

Movement of Groundwater 468

Darcy'S Law 469

Different Scales of Movement 470

SPRINGS 472

Hot Springs and Geysers 472

Wells 474

Artesian Wells 476

Problems Associated with Groundwater Withdrawal 477

Treating Groundwater as a Nonrenewable Resource 477

Subsidence 478

Saltwater Contamination 478

Groundwater Contamination 480

The Geologic Work of Groundwater 482

Caverns 482

Karst Topography 483

Box 17.1 Earth as a System Drought Impacts

the Hydrologic System 470

Box 17.2 People and the Environment Land Subsidence

in the San Joaquin Valley 479

Glaciers and Glaciation

Glaciers: A Part of Two Basic Cycles 490

Valley (Alpine) Glaciers 490

Ice Sheets 490

Other Types of Glaciers 493

What if the Ice Melted? 493

Formation and Movement of Glacial Ice 494

Glacial Ice Formation 494

Movement of A Glacier 494

Rates of Glacial Movement 495

Budget of a Glacier 496

Glacial Erosion 498

Landforms Created By Glacial Erosion 499

Glaciated Valleys 499

Arêtes and Horns 502

Roches Moutonées 503

Glacial Deposits 503

Landforms Made of Till 503

Lateral and Medial Moraines 503

End and Ground Moraines 504

Drumlins 505

Landforms Made of Stratified Drift 506

Outwash Plains and Valley Trains 506

Ice-Contact Deposits 507

Other Effects of Ice-Age Glaciers 507

Crustal Subsidence and Rebound 508

Sea-Level Changes 508

Changes to Rivers and Valleys 508

Ice Dams Create Proglacial Lakes 509

Pluvial Lakes 510

The Glacial Theory and the Ice Age 512

Causes of Glaciation 512

Plate Tectonics 513

Variations in Earth's Orbit 513

Other Factors 514

Box 18.1 Earth as a System Glaciers In Retreat 501

Box 18.2 Understanding Earth Glacial Lake Missoula, Megafloods, and the Channeled Scablands 511

Deserts and Winds 519

Distribution and Causes of Dry Lands 520

Low-Latitude Deserts 520

Middle-Latitude Deserts 521

Geologic Processes In Arid Climates 523

Weathering 524

The Role of Water 524

Basin and Range: The Evolution of a Desert Landscape 526

Transportation of Sediment by Wind 529

Bed Load 529

Suspended Load 530

Wind Erosion 530

Deflation and Blowouts 530

Desert Pavement 531

Ventifacts and Yardangs 532

Wind Deposits 533

Sand Deposits 533

Types of Sand Dunes 534

Loess (Silt) Deposits 536

Box 19.1 Understanding Earth: What Is Meant by "Dry"? 523

Box 19.2 People and the Environment: The Disappearing

Aral Sea—A Large Lake Becomes a Barren Wasteland 524

Box 19.3 Understanding Earth: Australia's Mount Uluru 529

Shorelines 541

The Shoreline: A Dynamic Interface 542

The Coastal Zone 542

Basic Features 543

Beaches 543

Waves 544

Wave Characteristics 544

Circular Orbital Motion 545 Waves in the Surf Zone 546

Wave Erosion 547

Sand Movement on the Beach 548

Movement Perpendicular to the Shoreline 548 Wave Refraction 548 Longshore Transport 549

Rip Currents 550

Shoreline Features 550

Professional Profile Rob Thieler Marine Geologist 551

Erosional Features 552 Depositional Features 552 The Evolving Shore 553

Stabilizing the Shore 553

Hard Stabilization 554

Alternatives to Hard Stabilization 556

Erosion Problems Along U.S. Coasts 557

Atlantic and Gulf Coasts 557

Pacific Coast 558

Hurricanes—The Ultimate Coastal Hazard 560

Profile of a Hurricane 562 Hurricane Destruction 562

Coastal Classification 564

Emergent Coasts 565

Submergent Coasts 565

Tides 565

Causes of Tides 566 Monthly Tidal Cycle 566 Tidal Patterns 567

Tidal Currents 568

Tides and Earth's Rotation 570

Box 20.1 People and the Environment: The Move of the Century-Relocating the Cape Hatteras Lighthouse 559 Box 20.2 People and the Environment: Hurricane Forecasting 568

Global Climate Change 575

Climate and Geology are Linked 576

The Climate System 577

How is Climate Change Detected? 577

Seafloor Sediment—A Storehouse of Climate Data 578

Oxygen Isotope Analysis 579 Climate Change Recorded In Glacial Ice 580

Tree Rings—Archives of Environmental History 580 Other Types of Proxy Data 582

Some Atmospheric Basics 582

Composition of the Atmosphere 583

Extent and Structure of the Atmosphere 584

Energy from the Sun 585

The Fate of Incoming Solar Energy 586

Heating the Atmosphere: The Greenhouse Effect 586

Natural Causes of Climate Change 587

Volcanic Activity and Climate Change 588

Solar Variability and Climate 589

Professional Profile Michael Mann Climate Change Scientist 590 Human Impact on Global Climate 592

Carbon Dioxide, Trace Gases, and Climate Change 593

CO2 Levels Are Rising 593

The Atmosphere's Response 593

The Role of Trace Gases 594

Climate-Feedback Mechanisms 596

How Aerosols Influence Climate 598

Some Possible Consequences of Global Warming 599

Sea Level Rise 600

The Changing Artic 602

Increasing Ocean Acidity 603

The Potential for "Surprises" 604

Box 21.1 Earth as a System: A Possible Link between Volcanism and Climate Change in the Geologic Past 592

Box 21.2 Understanding Earth: Computer Models

of Climate: Important Yet Perfect Tools 599

Box 21.3 Earth as a System: Global Climate Change Impacts on the United States 602

Earth's Evolution Through Geologic

Time

Is Earth Unique? 610

The Right Planet 610

The Right Location 612

The Right Time 612

Birth of a Planet 614

From Planetesimals to Protoplanets 614

Earth's Early Evolution 614

Origin of the Atmosphere and Oceans 614

Earth's Primitive Atmosphere 614

Oxygen in the Atmosphere 616

Evolution of the Oceans 617

Precambrian History: The Formation of Earth's Continents 618

Earth's First Continents 618

The Making of North America 619

Supercontinents of the Precambrian 620

Geologic History of the Phanerozoic: The Formation of Earth's Modern Continents 621

Paleozoic History 622

Mesozoic History 623 Cenozoic History 624 Earth's First Life 625 Paleozoic Era: Life Explodes 628 Early Paleozoic Life-Forms 629 Vertebrates Move to Land 630 The Great Permian Extinction 630 Professional Profile Neil Shubin Paleontologist 632 The Mesozoic Era: Age of the Dinosaurs 633 Cenozoic Era: Age of Mammals 634 From Reptiles to Mammals 635 Large Mammals and Extinction 637 Box 22.1 Understanding Earth: The Burgess Shale 626 Box 22.2 Understanding the Earth: Demise of the Dinosaurs 636 **Energy and Mineral Resources** Renewable and Nonrenewable Resources 644 Energy Resources 645 Coal 645 Oil and Natural Gas 646 Petroleum Formation 646 Oil Traps 647 Oil Sands and Oil Shale—Petroleum for the Future? 649 Oil Sands 649 Oil Shale 650 Alternate Energy Sources 652 Nuclear Energy 652 Solar Energy 653 Wind Energy 654 Hydroelectric Power 655 Geothermal Energy 656 Professional Profile Sally Benson Climate and Energy Scientist 658 Tidal Power 658 Mineral Resources 659 Mineral Resources and Igneous Processes 661 Magmatic Segregation 661 Diamonds 661 Hydrothermal Solutions 662 Mineral Resources and Metamorphic Processes 663 Weathering and Ore Deposits 663

Bauxite 664 Other Deposits 664 Placer Deposits 664

Canvon Mine 660

Nonmetallic Mineral Resources 665 Building Materials 665 Industrial Minerals 666

Box 23.1 Understanding Earth: Gas Hydrates— A Fuel from Ocean-Floor Sediments 651

Box 23.2 People and the Environment: Utah's Bingham

Planetary Geology 671

Our Solar System: An Overview 672 Nebular Theory: Formation of the Solar System 672

The Planets: Internal Structures, Atmospheres, and Weather 674

Planetary Impacts 678

Earth's Moon: A Chip Off the Old Block 678

How Did the Moon Form? 679

Planets and Moons 681

Mercury: The Innermost Planet 681 Venus: The Veiled Planet 682 Mars: The Red Planet 683

Jupiter: Lord of the Heavens 686 Saturn: The Elegant Planet 690 Uranus and Neptune: Twins 692

Minor Members of the Solar System 694 Asteroids: Leftover Planetesimals 695 Comets: Dirty Snowballs 696

Meteoroids: Visitors to Earth 698 Dwarf Planets 700

Box 24.1 Understanding Earth: Pathfinder—The First Geologist on Mars 690

Box 24.2 Earth as a System: Is Earth on a Collision Course?

APPENDIX A

Metric and English Units Compared 703

Glossary 704

Index 716

