Wiley Finance Series

Advanced Financial Risk Management Second Edition

Tools and Techniques for Integrated Credit Risk and Interest Rate Risk Management

DONALD R. VAN DEVENTER KENJI IMAI • MARK MESLER

Contents

Introduction: Wall Street Lessons from Bubbles	XXIII
Key Fallacies in Risk Management	xxiii
Selected Events in the Credit Crisis	xxviii
PART ONE	
Risk Management: Definitions and Objectives	
CHAPTER 1	
A Risk Management Synthesis: Market Risk, Credit Risk, Liquidity Risk,	-
and Asset and Liability Management	3
Risk Management: Definitions and Objectives	6
Advances in Integrated Risk Management and Institutional	
Barriers to Progress	8
Measuring the Trade-Offs between Risk and Return	11
When Bad Things Happen to Good People	11
U.S. Savings and Loan Crisis	12
Long-Term Capital Management	13
The 2006–2011 Credit Crisis	13
A Thousand Cuts	13
CHAPTER 2	
Risk, Return, Performance Measurement, and Capital Regulation	15
Practical Quantification of Risk	15
Perils and Pitfalls in the Measurement of Risk: The Impact	
of Selection Bias	16
Biases in Return vs. a Relative Benchmark	17
Historical Value at Risk: Selection Bias Again	18
Monte Carlo–Based Value at Risk	19
Expected Losses on Tranches of Collateralized Debt Obligations	19
Measuring Return: Market vs. Accounting Returns	20
Introduction to Transfer Pricing: Extracting Interest Rate Risk	
in a Financial Accounting Context	20
Bank of America, 1973–1979	21
First Interstate, 1982–1987	24
Performance Measurement and Capital Regulation	26
Perspectives on Measuring Risk: One Source of Risk or Many	
Sources of Risk?	26
Interest Rate Risk Management Evolution	27
Equity Risk Management Evolution	28

Option Risk Management Evolution	28
Credit Risk Management Evolution	28
Managing Risk and Strategy, Business by Business	29
Risk and Strategy Management in a Complex Financial Institution	29
What Causes Financial Institutions to Fail?	31
The Role of Capital in Risk Management and Business Strategy	32
Capital-Based Risk Management in Banking Today: Pros and Cons	35
History of Capital-Based Regulations in Commercial Banking	37

PART TWO

Risk Management Techniques for Interest Rate Analytics	
CHAPTER 3	
Interest Rate Risk Introduction and Overview	45
Background Information on Movements in the U.S. Treasury	
Yield Curve	46
A Step-by-Step Approach to Analyzing Interest Rate Risk	55
The Interest Rate Risk Safety Zone	58
CHAPTER 4	
Fixed Income Mathematics: The Basic Tools	59
Modern Implications of Present Value	59
Price, Accrued Interest, and Value	60
Calculation of Accrued Interest	60
Present Value	61
The Basic Present Value Calculation	61
Example	62
Calculating the Value of a Fixed Coupon Bond with	
Principal Paid at Maturity	62
Calculating the Coupon of a Fixed Coupon Bond with	
Principal Paid at Maturity When the Value Is Known	62
Example	63
The Value of an Amortizing Loan	63
Calculating the Payment Amount of an Amortizing Bond	
When the Value Is Known	63
Risk Management Implications	64
Calculating the Value of a Floating-Rate Bond or Loan with	
Principal Paid at Maturity	64
Example	65
Risk Management Implications	65
Compound Interest Conventions and Formulas	66
Future Value of an Invested Amount Earning at a Simple Interest	()
Rate of y Compounded m Times per Year for n Periods	66
Future Value of an Invested Amount Earning at a Simple Interest Rate of y Compounded Continuously for <i>n</i> Years	66
Example	67
Present Value of a Future Amount If Funds Are Invested at a	0/
Simple Interest Rate of y Compounded <i>m</i> Times per	
Year for <i>n</i> Periods	67
	07

Present Value of a Future Amount If Funds Are Invested at a Simple	
Interest Rate of y Compounded Continuously for n Years	67
Compounding Formulas and Present Value Factors $P(t)$	67
Yields and Yield-to-Maturity Calculations	68
The Formula for Yield to Maturity	68
Yield to Maturity for Long or Short First Coupon Payment Periods	- 69
Calculating Forward Interest Rates and Bond Prices	69
Implied Forward Interest Rates on Zero-Coupon Bonds	69
Example	70
Implied Forward Zero-Coupon Bond Prices	70
Present Value of Forward Fixed Coupon Bond	- 70
Implied Forward Price on a Fixed Coupon Bond	71
Implied Forward Coupon on a Fixed Coupon Bond	71
Other Forward Calculations	71
Summary	- 71

CHAPTER 5

73 **Yield Curve Smoothing** 77 Example A: Stepwise Constant Yields and Forwards vs. Nelson-Siegel 79 Deriving the Form of the Yield Curve Implied by Example A 81 Fitting the Nelson-Siegel Approach to Sample Data 85 Example D: Quadratic Yield Splines and Related Forward Rates Deriving the Form of the Yield Curve Implied by Example D 86 94 Example F: Cubic Yield Splines and Related Forwards Deriving the Form of the Yield Curve Implied by 95 **Example F Assumptions** Example H: Maximum Smoothness Forward 101 Rates and Related Yields Deriving the Parameters of the Quartic Forward Rate Curves 104 Implied by Example H Assumptions 111 Comparing Yield Curve and Forward Rate Smoothing Techniques Ranking 23 Smoothing Techniques by Smoothness of the 112 Forward Rate Curve Ranking 23 Smoothing Techniques by Length of the 112 Forward Curve Trading Off Smoothness vs. the Length of the Forward Rate Curve 112 The Shimko Test for Measuring Accuracy of Smoothing Techniques 116 Smoothing Yield Curves Using Coupon-Bearing Bond Prices as Inputs 116 117 Appendix: Proof of the Maximum Smoothness Forward Rate Theorem

CHAPTER 6

Introduction to Heath, Jarrow, and Morton Interest Rate Modeling	123
Objectives of the Example and Key Input Data	124
Key Implications and Notation of the HJM Approach	129
Pseudo-Probabilities	131
The Formula for Zero-Coupon Bond Price Shifts	132
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 2$	132

.

Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 4$	134
Valuation in the HJM Framework	137
Valuation of a Zero-Coupon Bond Maturing at Time $T = 4$	139
Valuation of a Coupon-Bearing Bond Paying Annual Interest	140
Valuation of a Digital Option on the One-Year U.S. Treasury Rate	140
Conclusion	140

CHAPTER 7

HJM Interest Rate Modeling with Rate and Maturity-Dependent Volatility	142
Objectives of the Example and Key Input Data	142
Key Implications and Notation of the HJM Approach	146
Pseudo-Probabilities	147
The Formula for Zero-Coupon Bond Price Shifts	147
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 2$	149
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 4$	150
Valuation in the HJM Framework	153
Valuation of a Zero-Coupon Bond Maturing at Time $T = 4$	155
Valuation of a Coupon-Bearing Bond Paying Annual Interest	156
Valuation of a Digital Option on the One-Year U.S. Treasury Rate	158
Conclusion	158

CHAPTER 8

HJM Interest Rate Modeling with Two Risk Factors	161
Probability of Yield Curve Twists in the U.S. Treasury Market	161
Objectives of the Example and Key Input Data	162
Introducing a Second Risk Factor Driving Interest Rates	163
Key Implications and Notation of the HJM Approach	167
Pseudo-Probabilities	171
The Formula for Zero-Coupon Bond Price Shifts with	
Two Risk Factors	171
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 2$	173
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 3$	174
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 4$	175
Valuation in the HJM Framework	178
Valuation of a Zero-Coupon Bond Maturing at Time $T = 4$	183
Valuation of a Coupon-Bearing Bond Paying Annual Interest	184
Valuation of a Digital Option on the One-Year	
U.S. Treasury Rate	185
Replication of HJM Example 3 in Common Spreadsheet Software	186
Conclusion	189

Contents

CHAPTER 9	
HJM Interest Rate Modeling with Three Risk Factors	190
Probability of Yield Curve Twists in the U.S. Treasury Market	190
Objectives of the Example and Key Input Data	191
Risk Factor 1: Annual Changes in the One-Year U.S.	
Treasury Spot Rate	192
Alternative Specifications of the Interest Rate Volatility Surface	200
Key Implications and Notation of the HJM Approach	201
Pseudo-Probabilities	205
The Formula for Zero-Coupon Bond Price Shifts with	
Three Risk Factors	205
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 2$	206
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 3$	208
Building the Bushy Tree for Zero-Coupon Bonds	
Maturing at Time $T = 4$	208
Valuation in the HJM Framework	217
Valuation of a Zero-Coupon Bond Maturing at Time $T = 4$	219
Valuation of a Coupon-Bearing Bond Paying Annual Interest	225
Valuation of a Digital Option on the One-Year	
U.S. Treasury Rate	227
Conclusion	229
CHAPTER 10	
Valuation, Liquidity, and Net Income	230
How Many Risk Factors Are Necessary to Accurately	
Model Movements in the Risk-Free Yield Curve?	230
Revisiting the Phrase "No Arbitrage"	231
Valuation, Liquidity Risk, and Net Income	234
Risk-Neutral and Empirical Probabilities of Interest	
Rate Movements	235
Monte Carlo Simulation Using HJM Modeling	236
Common Pitfalls in Interest Rate Risk Management	238
Pitfalls in the Use of One-Factor Term Structure Models	238
Common Pitfalls in Asset and Liability Management	243
Summarizing the Problems with Interpolated Monte Carlo	
Simulation for Risk Analysis	246
CHAPTER 11	
Interest Rate Mismatching and Hedging	250
Political Factions in Interest Rate Risk Management	251
Pension Fund Considerations	251
Life Insurance Companies and Property and Casualty Insurance	
Companies	252
Commercial Banks	253

Making a Decision on Interest Rate Risk and Return:	
The Safety Zone	254
Obvious Interest Rate Risk Decisions	255
Assessing the Risk and Return Trade-Offs from a	
Change in Interest Rate Risk	255
CHAPTER 12	
Legacy Approaches to Interest Rate Risk Management	257
Gap Analysis and Simulation Models	257
Measuring Interest Rate Risk: A Review	258
Legacy Rate Risk Tools: Interest Rate Sensitivity Gap Analysis	258
The Safety Zone	259
What's Wrong with Gap Analysis?	263
Legacy Rate Risk Tools: Multiperiod Simulation	264
Key Assumptions in Simulation	264
Data Aggregation in Simulation Modeling	266
Constraining the Model	266
Modeling the Maturity Structure of a Class of Assets	267
Periodicity of the Analysis	267
Exceptions to the Exact Day Count Trend	267
Legacy Rate Risk Tools: Duration and Convexity	267
Macaulay's Duration: The Original Formula	268
Using Duration for Hedging	270
Comparing a Duration Hedge with Hedging in the HJM Framework	271
Duration: The Traditional Market Convention	273
The Formula for Yield to Maturity	273
Yield to Maturity for Long or Short First Coupon Payment Periods	274
Applying the Yield-to-Maturity Formula to Duration	275
Modified Duration	276
The Perfect Duration Hedge: The Difference between the	270
Original Macaulay and Conventional Durations	278
Convexity and Its Uses	278
Convexity: A General Definition	279
Convexity for the Present Value Formula	280
Hedging Implications of the Convexity Concept	280
Conclusion	281
CHAPTER 13 Special Cases of Heath, Jarrow, and Morton Interest Rate Modeling	283
What Is an Academic Term Structure Model and Why	ζŲŪ
Was It Developed?	284
The Vocabulary of Term Structure Models	284
Ito's Lemma	286
Ito's Lemma for More Than One Random Variable	287
Using Ito's Lemma to Build a Term Structure Model	287
Duration as a Term Structure Model	288
Conclusions about the Use of Duration's Parallel Shift Assumptions	290
The Vasicek and Extended Vasicek Models	292

The Merton Term Structure Model: Parallel Yield Curve Shifts	293
The Extended Merton Model	298
The Vasicek Model	300
The Extended Vasicek-Hull and White Model	303
Alternative Term Structure Models	303
Alternative One-Factor Interest Rate Models	304
Two-Factor Interest Rate Models	306
Chen's Three-Factor Term Structure Model	307
Reprising the HJM Approach	308
Appendix A: Deriving Zero-Coupon Bond Prices in the	
Extended Merton/Ho and Lee Model	308
Appendix B: Deriving Zero-Coupon Bond Prices in the	
Vasicek Model	310
Appendix C: Valuing Zero-Coupon Bonds in the Extended	
Vasicek Model	313
CHAPTER 14	
Estimating the Parameters of Interest Rate Models	316
Revisiting the Meaning of No Arbitrage	316
	24.6

Revisiting the Meaning of No Arbitrage	510
A Framework for Fitting Term Structure Models	316
Fitting Zero-Coupon Bond Prices and Volatility Par	rameters Jointly 317
Steps in Fitting the Interest Rate Volatility Assumpt	cions 318
Example 1: Fitting Interest Rate Volatility When	
Six Callable Bonds Are Observable	318
Example 2: The Consequences of Fewer Inputs	329
Example 3: The Case of One Input	329
Interest Rate Parameter Fitting in Practical Application	tion 330
5	

PART THREE

Risk Management Techniques for Credit Risk Analytics

CHAPTER 15

An Introduction to Credit Risk: Using Market Signals in Loan	
Pricing and Performance Measurement	335
Market Prices for Credit Risk	335
Critical Sources of Market Data on Credit Risk	336
Bond Prices	336
Credit Default Swap Prices	337
First to Default Swaps	337
Collateralized Debt Obligations	338
Interest Rate Swap Prices	338
Equity Prices	338
Increased Accuracy in Pricing	339
Increased Clarity in Corporate Strategy	339
Increased Sophistication in Risk Management	340
Increased Precision in Measuring the Safety and	
Soundness of Financial Institutions	340
Credit Default Swaps: The Dangers of Market Manipulation	341

Daily Nondealer Trading Volume for 1,090 Reference Names	347
Credit Default Swap Trading Volume in Municipals and	
Sub-Sovereigns	352
Credit Default Swap Trading Volume in Sovereign Credits	353
Implications of CDS Trading Volume Data	357

CHAPTER 16	
Reduced Form Credit Models and Credit Model Testing	359
The Jarrow-Turnbull Model	359
The Jarrow-Turnbull Framework	360
The Jarrow Model	361
Zero-Coupon Bond Prices in the Jarrow Model	363
The Jarrow Model and the Issue of Liquidity in the Bond Market	364
The Jarrow-Merton Put Option as a Risk Index	
and a Practical Hedge	364
Fitting the Jarrow Model to Bond Prices, Credit Derivatives	
Prices, and Historical Default Databases	365
Fitting the Jarrow Model to Debt Prices	365
Fitting to Current Price Data and Historical Price Data	366
Fitting the Jarrow Model to Credit Derivatives Prices	366
Fitting the Jarrow Model to a Historical Database of Defaults	366
Fitting the Jarrow Model to Retail, Small Business, and	
Governmental Counterparties	370
Correlations in Default Probabilities	372
The Jarrow and Jarrow-Turnbull Models: A Summary	373
Tests of Credit Models Using Historical Data	374
An Introduction to Credit Model Testing	375
Misunderstandings about Credit Model Testing	376
The Two Components of Credit Model Performance	378
Measuring Ordinal Ranking of Companies by Credit Risk	379
The Predictive ROC Accuracy Ratio: Techniques and Results	380
The Predictive Capability of the Jarrow-Chava Reduced	
Form Model Default Probabilities	380
Measuring the Predictive ROC Accuracy Ratio	381
Reduced Form Model vs. Merton Model Performance	381
Consistency of Estimated and Actual Defaults	383
Recent Results from North America	383
The Falkenstein and Boral Test	383
Performance of Credit Models vs. Naïve Models of Risk	386
ROC Accuracy Ratios for Merton Model Theoretical	
Version vs. Selected Naïve Models	387
Tests of Credit Models Using Market Data	388
Testing Credit Models: The Analogy with Interest Rates	388
Market Data Test 1: Accuracy in Fitting Observable	200
Yield Curves and Credit Spreads	388
Market Data Test 2: Tests of Hedging Performance	389
Market Data Test 3: Consistency of Model Implications	200
with Model Performance	390

Market Data Test 4: Comparing Performance with Credit	
Spreads and Credit Default Swap Prices	391
Appendix: Converting Default Intensities to Discrete	
Default Probabilities	391
Converting Monthly Default Probabilities to Annual Default	
Probabilities	392
Converting Annual Default Probabilities to Monthly Default	
Probabilities	392
Converting Continuous Instantaneous Probabilities of	
Default to an Annual Default Probability or Monthly	
Default Probability	392
Converting Continuous Default Probability to an	
Annual Default Probability	393
Converting Continuous Default Probability to a	
Monthly Default Probability	393
Converting an Annual Default Probability to a Continuous	
Default Intensity	393
Converting a Monthly Default Probability to a Continuous	
Default Intensity	394
TER 17	000
redit Spread Fitting and Modeling	396
Introduction to Credit Spread Smoothing	396
The Market Convention for Credit Spreads	397
A Better Convention for Credit Model-Independent Credit Spreads	398
Deriving the Full Credit Spread of a Risky Issuer	399
Credit Spread Smoothing Using Yield Curve–Smoothing Techniques	404

CHAPTER	17
Credit	Spr

Int	roduction to Credit Spread Smoothing	396
Th	e Market Convention for Credit Spreads	397
AI	Better Convention for Credit Model–Independent Credit Spreads	398
	Deriving the Full Credit Spread of a Risky Issuer	399
Cre	edit Spread Smoothing Using Yield Curve-Smoothing Techniques	404
	Setting the Scene: Smoothing Results for the Risk-Free Curve	404
	A Naïve Approach: Smoothing ABC Yields by Ignoring	
	the Risk-Free Curve	406
Fitt	ting Credit Spreads with Cubic Splines	409
Ma	aximum Smoothness Forward Credit Spreads	410
Со	mparing Results	411
Da	ta Problems with Risky Issuers	413
	The Case of LIBOR	413
De	terminants of Credit Spread Levels	415
Th	e Credit Risk Premium: The Supply and Demand for Credit	416
	nclusion	420

CHAPTER 18

Legacy Approaches to Credit Risk	421
The Rise and Fall of Legacy Ratings	421
Ratings: What They Do and Don't Do	422
Through the Cycle vs. Point in Time, a Distinction	
without a Difference	423
Stress Testing, Legacy Ratings, and Transition Matrices	425
Transition Matrices: Analyzing the Random Changes in	
Ratings from One Level to Another	426
-	

XV

Moral Hazard in "Self-Assessment" of Ratings Accuracy	
by Legacy Rating Agencies	426
Comparing the Accuracy of Ratings and Reduced Form Default	
Probabilities	429
Problems with Legacy Ratings in the 2006 to 2011 Credit Crisis	431
The Jarrow-Merton Put Option and Legacy Ratings	437
The Merton Model of Risky Debt	438
The Intuition of the Merton Model	439
The Basic Merton Model	441
Valuing Multipayment Bonds with the Merton Model of Risky Debt	444
Estimating the Probability of Default in the Merton Model	445
Implying the Value of Company Assets and Their Return Volatility σ	446
Mapping the Theoretical Merton Default Probabilities to	
Actual Defaults	447
The Merton Model When Interest Rates Are Random	4 47
The Merton Model with Early Default	44 7
Loss Given Default in the Merton Model	448
Copulas and Correlation between the Events of Default of	
Two Companies	448
Back to the Merton Case	448
Problems with the Merton Model: Summing Up	449
Appendix	450
Assumptions	450
Using Ito's Lemma to Expand Changes in the Value of	
Company Equity	450
CHAPTER 19	
Valuing Credit Risky Bonds	453
The Present Value Formula	453
Valuing Bonds with No Credit Risk	454
Simulating the Future Values of Bonds with No Credit Risk	454
Current and Future Values of Fixed Income Instruments:	
HJM Background and a Straight Bond Example	455
Valuation of a Straight Bond with a Bullet	
Principal Payment at Maturity	461
Valuing an Amortizing Loan	461
Valuing Risk-Free, Floating-Rate Loans	465
Valuing Bonds with Credit Risk	465
Simulating the Future Values of Bonds with Credit Risk	471
Valuing the Jarrow-Merton Put Option	472
CHAPTER 20	
Credit Derivatives and Collateralized Debt Obligations	473
Credit Default Swaps: Theory	474
Credit Default Swaps: Practice	477
Collateralized Debt Obligations: Theory	480
Collateralized Debt Obligations: A Worked Example of	
Reduced Form Simulation	483

Collateralized Debt Obligations: Practice	486
The Copula Method of CDO Valuation: A Postmortem	487
Valuing the Jarrow-Merton Put Option	490
PART FOUR	
Risk Management Applications: Instrument by Instrument	
CHAPTER 21	
European Options on Bonds	495
Example: European Call Option on Coupon-Bearing Bond	501
Example: Coupon-Bearing Bond with Embedded	
European Call Option	503
European Options on Defaultable Bonds	509
HJM Special Case: European Options in the One-Factor Vasicek Model	500
Options on Coupon-Bearing Bonds	509 511
The Jarrow-Merton Put Option	511
The jarrow Merton Fut Option	512
CHAPTER 22	
Forward and Futures Contracts	513
Forward Contracts on Zero-Coupon Bonds	514
Forward Rate Agreements	520
Eurodollar Futures-Type Forward Contracts	524
Futures on Zero-Coupon Bonds: The Sydney Futures Exchange Bank Bill Contract	527
Futures on Coupon-Bearing Bonds: Dealing with the	327
Cheapest to Deliver Option	528
Eurodollar and Euroyen Futures Contracts	529
Defaultable Forward and Futures Contracts	530
OUADTED DO	
CHAPTER 23 European Options on Forward and Futures Contracts	531
Valuing Options on Forwards and Futures:	
Notations and Useful Formulas	531
European Options on Forward Contracts on Zero-Coupon Bonds	532
European Options on Forward Rate Agreements	538
European Options on a Eurodollar Futures-Type Forward Contract	540
European Options on Futures on Coupon-Bearing Bonds	546
European Options on Money Market Futures Contracts	546
Defaultable Options on Forward and Futures Contracts	546
CHAPTER 24	
Caps and Floors	548
Caps as European Options on Forward Rate Agreements	550

Caps as European Options on Forward Rate Agreements	550
Forming Other Cap-Related Securities	550
Valuing a Cap	550
Valuing a Floor	554
Valuing a Floating Rate Loan with a Cap	557

XVİİ

Value of a Loan with a Cap and a Floor	563
Variations on Caps and Floors	565
Measuring the Credit Risk of Counterparties on Caps and Floors	565
CHAPTER 25	
Interest Rate Swaps and Swaptions	567
Interest Rate Swap Basics	567
Valuing the Interest Rate Swaps	568
The Observable Fixed Rate in the Swap Market	574
An Introduction to Swaptions	574
Valuation of European Swaptions	578
Valuation of American Swaptions	579
Defaultable Interest Rate Swaps and Swaptions	579
CHAPTER 26	
Exotic Swap and Options Structures	580
Arrears Swaps	580
Digital Option	586
Digital Range Notes	588
Range Floater	588
Other Derivative Securities	593
Credit Risk and Exotic Derivatives Structures	594
CHAPTER 27	
American Fixed Income Options	596
An Overview of Numerical Techniques for Fixed	
Income Option Valuation	597
An Example of Valuation of a Callable Bond with a	
Three-Factor HJM Bushy Tree	598
What Is the Par Coupon on a Callable Bond?	613
An Example of Valuation of a Rationally Prepaid	
Amortizing Loan	613
Monte Carlo Simulation	615
Conclusions	618
Finite Difference Methods	618
Binomial Lattices	619
Trinomial Lattices	619
HJM Valuation of American Fixed Income Options When Default Risk Is Present	620
CHAPTER 28	
Irrational Exercise of Fixed Income Options	622
Analysis of Irrationality: Criteria for a Powerful Explanation	623
The Transactions Cost Approach	624
Irrational Exercise of European Options	625
The Irrational Exercise of American Options	626

A Worked Example Using an Amortizing Loan with	
Rational and Irrational Prepayment Behavior	626
Implied Irrationality and Hedging	636
Credit Risk and Irrational Prepayment Behavior	637
CHAPTER 29	
Mortgage-Backed Securities and Asset-Backed Securities	639
Transactions Costs, Prepayments, Default, and Multinomial Logit	640
Legacy Prepayment Analysis of Mortgage-Backed Securities	643
Legacy Approaches: Prepayment Speeds and the	
Valuation of Mortgages	643
Constant Prepayment Speeds Are Simply a Principal	
Amortization Assumption	644
Legacy Approaches: Option-Adjusted Spread	645
Implications for OAV Spread, CMOs, and ARMs	647
Logistic Regression, Credit Risk, and Prepayment	648
Mortgage-Servicing Rights: The Ultimate Structured Product	648
An Introduction to the Valuation of Mortgage-Servicing Rights	649
Comparing Best Practice and Common Practice in	650
Valuing and Hedging Mortgage-Servicing Rights Valuation Yield Curve for Cash Flows	650
Simulation of Random Movements in Yields	651
The Role of Home Prices in Defaults and Prepayments	652
Other Sources of Cash Flow Related to	052
Mortgage-Servicing Rights	653
Incorrect Hedging of Mortgage-Servicing Rights	653
Conclusion	654
CHAPTER 30	
Nonmaturity Deposits	656
The Value of the Deposit Franchise	657
Total Cash Flow of Nonmaturity Deposits	658
Specifying the Rate and Balance Movement Formulas	659
The Impact of Bank Credit Risk on Deposit Rates and Balances	669
Case Study: German Three-Month Notice Savings Deposits	672
The Regulators' View	673
Conclusion	674
CHAPTER 31	
Foreign Exchange Markets	675
Setting the Stage: Assumptions for the Domestic and	
Foreign Economies	675
Foreign Exchange Forwards	676
Numerical Methods for Valuation of Foreign Currency Derivatives	677
Legacy Approaches to Foreign Exchange Options Valuation	678
Implications of a Term Structure Model-Based FX Options Formula	680
The Impact of Credit Risk on Foreign Exchange Risk Formulas	681

XİX

CHAPTER 32	
Impact of Collateral on Valuation Models: The Example of Home Prices in the Credit Crisis	682
The Impact of Changing Home Prices on Collateral Values	002
in the Credit Crisis	682
Modeling Variations in Collateral Values	683
The Impact of Collateral Values on a Rationally Prepaid Mortgage	684
Conclusions about the Impact of Collateral Values	693
CHAPTER 33	
Pricing and Valuing Revolving Credit and Other Facilities	694
Analyzing Revolving Credit and Other Facilities Fluctuating Credit Risk and Revolving Credit Drawdowns	695 696
Incorporating Links between Credit Quality and Line Usage	690
Is a Line of Credit a Put Option on the Debt of the Issuer?	697
CHAPTER 34	
Modeling Common Stock and Convertible Bonds on a Default-Adjusted Basis	700
Modeling Equities: The Traditional Fund Management Approach	701
Modeling Equities: The Derivatives Approach	702
Modeling Equities: A Credit Risk-Adjusted Approach	703
Options on the Common Stock of a Company That Can Go Bankrupt	704
Convertible Bonds of a Company That Can Go Bankrupt	706
CHAPTER 35	
Valuing Insurance Policies and Pension Obligations	708
Life Insurance: Mortality Rates vs. Default Probabilities	708
Cyclicality in Default Probabilities and Mortality Rates Valuing Life Insurance Policies	711 711
Pension Obligations	711
Property and Casualty Insurance	712
The Jarrow-Merton Put Option	714
PART FIVE	
Portfolio Strategy and Risk Management	
CHAPTER 36 Volume at Pink and Pink Management Objectives Devicited at the	
Value-at-Risk and Risk Management Objectives Revisited at the Portfolio and Company Level	719
The Jarrow-Merton Put Option as a Measure of Total Risk:	/13
An Example	719
A Four-Question Pass—Fail Test for Financial Institutions'	/1/
CEOs and Boards of Directors	723
Why Do These Four Questions Matter?	724
An Alphabet of 26 Extra-Credit Questions	724
Is Your Value-at-Risk from Value-at-Risk?	726

VaR vs. the Put Option for Capital Allocation	728
Why Are the VaR and Put Approaches So Different:	
Self-Insurance vs. Third-Party Insurance	729
Calculating the Jarrow-Merton Put Option Value and	
Answering the Key $4 + 26$ Questions	731
Valuing and Simulating the Jarrow-Merton Put Option	732
What's the Hedge?	733
Liquidity, Performance, Capital Allocation, and	
Own Default Risk	734
CHAPTER 37	
Liquidity Analysis and Management: Examples from the Credit Crisis	735
Liquidity Risk Case Studies from the Credit Crisis	735
Case Studies in Liquidity Risk	736
Largest Funding Shortfalls	736
American International Group (AIG)	737
Consolidated JPMorgan Chase, Bear Stearns, and	, 0,
Washington Mutual	744
State Street	746
Morgan Stanley	749
Dexia Credit Local New York Branch	751
Implications of the Credit Crisis History for Liquidity	/ 51
Risk Management and Analysis	758
Types of Liquidity Events	758
Liquidity Risk and Credit Risk Linkages	759
Measuring Liquidity Risk as a Line of Credit in the	/3/
Jarrow-Merton Put Option Sense	760
Integrating Managerial Behavior and Market Funds Supply	/00
in Liquidity Risk Measurement	761
Determining the Optimal Liquidity Strategy	763
Summing Up	763
Summing Op	/03
CHAPTER 38 Performance Measurement: Plus Alpha vs. Transfer Pricing	765
Transaction-Level Performance Measurement vs. Portfolio-	/00
Level Performance Measurement	766
Plus Alpha Benchmark Performance vs. Transfer Pricing	767
Why Default Risk Is Critical in Performance Measurement	/6/
of Equity Portfolios	760
1 .	768
"Plus Alpha" Performance Measurement in Insurance and Banking	769
Decomposing the Reasons for Plus or Minus Alpha in a Fixed Income Portfolio	770
	770
A Worked Example of Modern Fixed Income Performance Attribution The Jarrow Merton But Option and Capital	772
The Jarrow-Merton Put Option and Capital	780
Using the Jarrow-Merton Put Option for Capital Allocation Introduction	780
	780
Using the Jarrow-Merton Put Option Concept for Capital Allocation	780

XXİ

Extending the Jarrow-Merton Capital Allocation	
to a Multiperiod Framework	782
Summing Up	782
CHAPTER 39	
Managing Institutional Default Risk and Safety and Soundness	783
Step 1: Admitting the Possibility of Failure	783
Managing the Probability of Failure	785
Are Ratings a Useful Guide?	785
Are CDS Spreads a Useful Guide?	786
Using Quantitative Default Probabilities	787
Controlling the Probability of Failure through the Credit Cycle	789
Hedging Total Risk to Maximize Shareholder Value	790
Implications for Basel II, Basel III, and Solvency II	791
Simulating Your Own Probability of Default	792
CHAPTER 40	
Information Technology Considerations	793
Common Practice in Risk Management Systems: Dealing with Legacy Systems	793
Upgrading the Risk Infrastructure: The Request for Proposal Process	795
Paid Pilots as Final Proof of Concept	796
Keys to Success in Software Installation	797
Vendor Size: Larger Vendor or Small Vendor?	798
Being a Best Practice User	799
being a best fractice osci	
CHAPTER 41 Shareholder Value Creation and Destruction	000
	800
Do No Harm	800
Measure the Need to Change	801
Rating Your Primary Risk System	803
Master the Politics and Exposition of Risk Management:	0.0.3
Shareholder Value Creation	803
Daily Management Reporting of Total Risk	805

Index

Extending the Jarrow-Merton Capital Allocation to a Multiperiod Framework Summing Up	782 782
CHAPTER 39	700
Managing Institutional Default Risk and Safety and Soundness	783 783
Step 1: Admitting the Possibility of Failure	785
Managing the Probability of Failure	785
Are Ratings a Useful Guide?	786
Are CDS Spreads a Useful Guide?	787
Using Quantitative Default Probabilities	789
Controlling the Probability of Failure through the Credit Cycle	790
Hedging Total Risk to Maximize Shareholder Value Implications for Basel II, Basel III, and Solvency II	791
Cinclusions for basel II, basel III, and Solvency II	792
Simulating Your Own Probability of Default	
CHAPTER 40	709
Information Technology Considerations	793
Common Practice in Risk Management Systems: Dealing with	702
Legacy Systems	793 795
Upgrading the Risk Infrastructure: The Request for Proposal Process	793 796
Paid Pilots as Final Proof of Concept	798
Keys to Success in Software Installation	798
Vendor Size: Larger Vendor or Small Vendor?	799
Being a Best Practice User	
CHAPTER 41	
Shareholder Value Creation and Destruction	800
Do No Harm	800
Measure the Need to Change	801
Rating Your Primary Risk System	803
Master the Politics and Exposition of Risk Management:	003
Shareholder Value Creation	803
Daily Management Reporting of Total Risk	805 806
Moving from Common Practice to Best Practice	808 807
The Senior Management Perspective	807
The Middle Management Perspective	807
The Working-Level Perspective	808
Getting Help to Create Shareholder Value Postscript	808
	000
Bibliography	809
Index	819