Robert E. Schapire Yoav Freund

Prinsing

Foundations and Algorithms

Contents

	Serie	xi	
	Pref	ace	xiii
1	Introduction and Overview		
	1.1	Classification Problems and Machine Learning	2
	1.2	Boosting	4
	1.3	Resistance to Overfitting and the Margins Theory	14
	1.4	Foundations and Algorithms	17
		Summary	19
		Bibliographic Notes	19
		Exercises	20
I	CO	RE ANALYSIS	21
2	Foundations of Machine Learning		
	2.1	A Direct Approach to Machine Learning	24
	2.2	General Methods of Analysis	30
	2.3	A Foundation for the Study of Boosting Algorithms	43
		Summary	49
		Bibliographic Notes	49
		Exercises	50
3	Using AdaBoost to Minimize Training Error		
	3.1	A Bound on AdaBoost's Training Error	54
	3.2	A Sufficient Condition for Weak Learnability	56
	3.3	Relation to Chernoff Bounds	60
	3.4	Using and Designing Base Learning Algorithms	62
		Summary	70
		Bibliographic Notes	71
		Exercises	71

-		
- 6	 	nts
•	 II.E	

4	Direct Bounds on the Generalization Error	75
	4.1 Using VC Theory to Bound the Generalization Error	75
	4.2 Compression-Based Bounds	83
	4.3 The Equivalence of Strong and Weak Learnability	86
	Summary	88
	Bibliographic Notes	89
	Exercises	89
5	The Margins Explanation for Boosting's Effectiveness	93
	5.1 Margin as a Measure of Confidence	94
	5.2 A Margins-Based Analysis of the Generalization Error	97
	5.3 Analysis Based on Rademacher Complexity	106
	5.4 The Effect of Boosting on Margin Distributions	111
	5.5 Bias, Variance, and Stability	117
	5.6 Relation to Support-Vector Machines	122
	5.7 Practical Applications of Margins	128
	Summary	132
	Bibliographic Notes	132
	Exercises	134
II	FUNDAMENTAL PERSPECTIVES	139
6	Game Theory, Online Learning, and Boosting	141
	6.1 Game Theory	142
	6.2 Learning in Repeated Game Playing	145
	6.3 Online Prediction	153
	6.4 Boosting	157
	6.5 Application to a "Mind-Reading" Game	163
	Summary	169
	Bibliographic Notes	169
	Exercises	170
7	Loss Minimization and Generalizations of Boosting	175
	7.1 AdaBoost's Loss Function	177
	7.2 Coordinate Descent	179
	7.3 Loss Minimization Cannot Explain Generalization	184
	7.4 Functional Gradient Descent	188
	7.5 Logistic Regression and Conditional Probabilities	194
	7.6 Regularization	202
	7.7 Applications to Data-Limited Learning	211
	Summary	219
	Bibliographic Notes	219
	Exercises	220

Contents ix

8	Boosting, Convex Optimization, and Information Geometry		
	8.1	Iterative Projection Algorithms	228
	8.2	Proving the Convergence of AdaBoost	243
	8.3	Unification with Logistic Regression	252
	8.4	Application to Species Distribution Modeling	255
		Summary	260
		Bibliographic Notes	262
		Exercises	263
Ш	ALG	ORITHMIC EXTENSIONS	269
9	Using Confidence-Rated Weak Predictions		
	9.1	The Framework	273
	9.2	General Methods for Algorithm Design	275
	9.3	Learning Rule-Sets	287
	9.4	Alternating Decision Trees	290
		Summary	296
		Bibliographic Notes	297
		Exercises	297
10	Multiclass Classification Problems		
	10.1	A Direct Extension to the Multiclass Case	305
		The One-against-All Reduction and Multi-label Classification	310
	10.3	Application to Semantic Classification	316
	10.4	General Reductions Using Output Codes	320
		Summary	333
		Bibliographic Notes	333
		Exercises	334
11	Learning to Rank		
	11.1	A Formal Framework for Ranking Problems	342
	11.2	A Boosting Algorithm for the Ranking Task	345
	11.3	Methods for Improving Efficiency	351
	11.4	Multiclass, Multi-label Classification	361
	11.5	Applications	364
		Summary	367
		Bibliographic Notes	369
		Exercises	369

X		Contents

IV	ADVANCED THEORY		375
12	Attaining the Best Possible Accuracy		377
	12.1 Optimality in Classification and Risk M	Minimization	378
	12.2 Approaching the Optimal Risk		382
	12.3 How Minimizing Risk Can Lead to Po	or Accuracy	398
	Summary		406
	Bibliographic Notes		406
	Exercises		407
13	Optimally Efficient Boosting		415
	13.1 The Boost-by-Majority Algorithm		416
	13.2 Optimal Generalization Error		432
	13.3 Relation to AdaBoost		448
	Summary		453
	Bibliographic Notes		453
	Exercises		453
14	Boosting in Continuous Time		459
	14.1 Adaptiveness in the Limit of Continuo	us Time	460
	14.2 BrownBoost		468
	14.3 AdaBoost as a Special Case of Brown!	Boost	476
	14.4 Experiments with Noisy Data		483
	Summary		485
	Bibliographic Notes		486
	Exercises		486
App	endix: Some Notation, Definitions, and Mat	hematical Background	491
	A.1 General Notation		491
	A.2 Norms		492
	A.3 Maxima, Minima, Suprema, and Infim	a	493
	A.4 Limits		493
	A.5 Continuity, Closed Sets, and Compactr	ness	494
	A.6 Derivatives, Gradients, and Taylor's Ti	heorem	495
	A.7 Convexity		496
	A.8 The Method of Lagrange Multipliers		497
	A.9 Some Distributions and the Central Lin	mit Theorem	498
	Bibliography		501
	Index of Algorithms, Figures, and Tables		511
	Subject and Author Index		513