Contents

	rew efac			xi xiii
1.	Intr	oducti	ion	1
			uction of Electronic Package Integration, 1 w of Modeling Technologies, 6 ization of the Book. 10	
2.			deling of Complex Interconnects	16
	2.1		uction, 16	
			Scope of macromodeling, 18	
		2.1.2		
			modeling of interconnects, 19	
	2.2	Netwo	ork Parameters: Impedance, Admittance, and	
			ring Matrices, 19	
		2.2.1	Impedance matrix, 21	
		2.2.2	Admittance matrix, 22	
			Scattering matrix, 23	
			Conversion between Z, Y, and S matrices, 24	
	2.3 Rational Function Approximation with Partial Fr			s, 25
			Introduction, 25	
			Iterative weighted linear least-squares estimator	r, 27
	2.4		r Fitting (VF) Method, 29	
			Two steps in vector fitting method, 29	
			Fitting vectors with common poles, 35	
			Selection of initial poles, 37	1 20
			Enhancement to the original vector fitting metho	a, 38
	2.5		omodel Synthesis, 41	
		2.5.1		
		2.5.0	synthesis, 42	
		2.5.2	Equivalent circuits, 46	

2.6	2.6.1 2.6.2 2.6.3	Causality, 50 Passivity assessment, 54				
		Passivity enforcement, 58 Other issues, 78				
2.7		modeling Applied to High-Speed Interconnects and				
2.1	Circuit					
		A lumped circuit with nonlinear components, 79				
		Vertically natural capacitors (VNCAPs), 83				
	2.7.3	Stripline-to-microstrip line transition with vias, 87				
2.8		usion, 91				
		References, 92				
2 5 5	` C:	ulation Mathad for OD Later A. I				
		ulation Method for 3D Integrated				
-	tems	97				
3.1 3.2		action, 97				
3.2	Multiple Scattering Method for Electronic Package					
		ing with Open Boundary Problems, 98				
	3.2.1	Modal expansion of fields in a parallel-plate waveguide (PPWG), 98				
	3.2.2	Multiple scattering coefficients among cylindrical				
		PEC and perfect magnetic conductor (PMC) vias, 101				
	3.2.3	Excitation source and network parameter				
		extraction, 109				
	3.2.4	Implementation of effective matrix-vector				
		multiplication (MVM) in linear equations, 117				
	3.2.5	Numerical examples for single-layer power-ground				
		planes, 121				
3.3	Novel	Boundary Modeling Method for Simulation of				
		Domain Power-Ground Planes, 127				
		Perfect magnetic conductor (PMC) boundary, 128				
		Frequency-dependent cylinder layer (FDCL), 128				
	3.3.3	Validations of FDCL, 131				
3.4	Numerical Simulations for Finite Structures, 133					
	3.4.1					
		algorithm for finite structure simulation, 133				
	3.4.2	Modeling of arbitrarily shaped boundary				
		structures, 139				

3.

	3.5	Model	ing of 3D Electronic Package Structure, 142
		3.5.1	Modal expansions and boundary conditions, 143
		3.5.2	Mode matching in PPWGs, 150
		3.5.3	Generalized <i>T</i> -matrix for two-layer problem, 158
		3.5.4	Formulae summary for two-layer problem, 164
		3.5.5	Formulae summary for 3D structure problem, 169
			Numerical simulations for multilayered
			power-ground planes with multiple vias, 176
	3.6	Concl	usion, 182
			ences, 183
4	Hvh	rid In	tegral Equation Modeling Methods
٠.			tegration 185
			uction, 185
			tegral Equation Equivalent Circuit (IEEC)
	1.22		od, 186
			Overview of the algorithm, 186
			Modal decoupling inside the power distribution
		7,2,2	network (PDN), 187
		4.2.3	
			in power-ground planes (PGPs), 189
		4.2.4	Combinations of transmission and parallel plate
			modes, 194
		4.2.5	Cascade connections of equivalent networks, 205
			Simulation results, 214
	4.3		ybrid Integral Equation Method, 220
			Overview of the algorithm, 220
			Equivalent electromagnetic currents and dyadic
			green's functions, 224
		433	Simulation results, 231
	44		usion, 238
			ences, 238
		Refer	, 1000, 1000
5.	Sys	temat	tic Microwave Network Analysis for
	3D	Integ	rated Systems 241
	5.1	Intrin	sic Via Circuit Model for Multiple Vias in an Irregular
		Plate	Pair, 242

5.1.2 Segmentation of vias and a plate pair, 245

5.1.1 Introduction, 242

4.

	5.1.3 5.1.4 5.1.5 5.1.6 5.1.7	Determination of the virtual via boundary, 263 Complete model for multiple vias in an irregular plate pair, 267
5.2		Plane Pair Model, 281
3.2	5.2.1	Introduction, 281
		·
		Overview of two conventional Z_{pp} definitions, 283 New Z_{pp} definition using the zero-order parallel
	3.2.3	plate waves, 285
	5.2.4	Analytical formula for radial scattering matrix S_{m}^{R}
		in a circular plate pair. 290
	5.2.5	BIE method to evaluate S_{pp}^{R} for an irregular plate pair, 292
	5.2.6	Numerical examples and measurements, 296
		Conclusion, 303
5.3	Cascad	led Multiport Network Analysis of Multilayer
		re with Multiple Vias, 305
	5.3.1	Introduction, 305
	5.3.2	Multilayer PCB with vias and decoupling
		capacitors, 307
		Systematic microwave network method, 308
	5.3.4	Validations and discussion, 316
	5.3.5	Conclusion, 324
		dix: Properties of the Auxiliary Function
		y), 326
	Refere	nces, 327
Mod	leling	of Through-Silicon Vias (TSV) in 3D
Inte	gratio	n 331
6.1	Introdu	action, 331
	6.1.1	
	6.1.2	Modeling of TSV, 335
6.2		ellent Circuit Model for TSV, 336
		Overview, 337
	6.2.2	Problem statement: Two-TSV configuration, 338
	0.2.3	Wideband Pi-type equivalent-circuit model, 339

6.

6.2.4	Rigorous closed-form formulae for resistance and
	inductance, 341
6.2.5	Scattering parameters of two-TSV system, 345
6.2.6	Results and discussion. 346
MOS	Capacitance Effect of TSV, 351
6.3.1	MOS capacitance effect, 351
6.3.2	Bias voltage-dependent MOS capacitance of
	TSVs, 351
6.3.3	Results and analysis, 355
Conc	lusion, 356
Refer	ences, 358

361

6.3

6.4

Index