Contents

Pr	eface			xi
Contributors				xiii
1	Surface Plasmons for Biodetection Pavel Adam, Marek Piliarik, Hana Šípová, Tomáš Špringer, Milan Vala, and Jiří Homola			1
	1.1	Introdu	action	1
	1.2	Princip	bles of SPR Biosensors	2
		1.2.1	Surface Plasmons	2 2 4 7
		1.2.2	Excitation of Surface Plasmons	4
		1.2.3	Sensors Based on Surface Plasmons	
		1.2.4	SPR Affinity Biosensors	8
		1.2.5		9
	1.3	Optica	l Platforms for SPR Sensors	12
		1.3.1	Prism-Based SPR Sensors	12
		1.3.2	SPR Sensors Based on Grating Couplers	20
		1.3.3	SPR Sensors Based on Optical Waveguides	23
		1.3.4	Commercial SPR Sensors	25
	1.4	Functi	onalization Methods for SPR Biosensors	26
		1.4.1	Functional Layers	27
		1.4.2	Attachment of Receptors to Functional Surfaces	29
		1.4.3	Molecular Recognition Elements	34
	1.5	Applic	eations of SPR Biosensors	35
		1.5.1	Detection Formats	35
		1.5.2	Medical Diagnostics	36
		1.5.3	Environmental Monitoring	36
		1.5.4	Food Quality and Safety	38
	1.6	Summ	ary	45
		Refere	ences	4.

2	Microchip-Based Flow Cytometry in Photonic Sensing: Principles and Applications for Safety and Security Monitoring			
	Benja	ımin R. Watts, Zhiyi Zhang. and Chang-Qing Xu		
	2.1	Introduction	59	
	2.2	Microchip-Based Flow Cytometry	61	
	2.3	Microchip-Based Flow Cytometry with Integrated Optics	66	
	2.4	Applications	73	
	2.5	Conclusion	18	
		References	83	
3	Optofluidic Techniques for the Manipulation of Micro Particles: Principles and Applications to Bioanalyses			
	Honglei Guo, Gaozhi Xiao, and Jianping Yao			
	3.1	Introduction	89	
	3.2	Optofluidic Techniques for the Manipulation of Particles	90	
		3.2.1 Fiber-Based Optofluidic Techniques	91	
		3.2.2 Near-Field Optofluidic Techniques	96	
		3.2.3 Optical Chromatography Techniques: Axial-Type and		
	2.2	Cross-Type	102	
	3.3	Enhancing Optical Manipulation with a Monolithically		
	2.4	Integrated on-Chip Structure	104	
	3.4	Applications	110	
	3.5	Conclusion	112	
		Acknowledgments	114	
		References	114	
4	Opti	cal Fiber Sensors and Their Applications for Explosive		
	Detection			
	Jianj	un Ma and Wojtek J. Bock		
	4.1	Introduction	119	
	4.2	A Brief Review of Existing Fiber-Optic-Based Explosive		
		Detectors	123	
	4.3	High Performance Fiber-Optic Explosive Detector Based on		
		the AFP Thin Film	129	
		4.3.1 Optimizing Fiber-Optic Explosive Detector		
		Architecture	129	
		4.3.2 Experimental Demonstration of Fluorescent		
		Quenching Detection and Discussion	130	
		4.3.3 Unique Advantage of the Optimized		
		Detector—Dramatically Increased Fluorescence		
		Collection through the End-Face-TIR Process	134	
	4.4	Generating High Quality Polymer Film—Pretreatment with		
		Adhesion Promoter	137	

		CONTENTS	vii			
	4.5	Effect of Photodegradation on AFP Polymer	138			
	4.6 Optimizing Polymer Concentration for Optimized AFP-Film					
		Thickness	138			
	4.7	Explosive Vapor Preconcentration and Delivery	139			
		4.7.1 Adsorption/Desorption Zone 40	141			
		4.7.2 Equilibrium Zone 46	142			
		4.7.3 Chromatography Zone 52	142			
		4.7.4 Preconditioning Zone 60	142			
		4.7.5 Sensing Zone 42	142			
	4.8	Future Directions and Conclusions	143			
		References	144			
_	nl					
5		onic Liquid Crystal Fiber Sensors for Safety and Security	147			
	Monitoring					
	Toma.	sz Wolinski				
	5.1	Introduction	147			
	5.2	Materials and Experimental Setups	149			
	5.3	Principle of Operation	153			
		5.3.1 Mechanism of Propagation in a PLCF	153			
		5.3.2 LC Arrangement in PCF	154			
	5.4	Tuning Possibility	157			
		5.4.1 Thermal Tuning	157			
		5.4.2 Electrical Tuning	159			
		5.4.3 Pressure Tuning	162			
		5.4.4 Optical Tuning	164			
		5.4.5 Birefringence Tuning	166			
	5.5	Photonic Devices	172			
		5.5.1 Electrically Tuned Phase Shifter	173			
		5.5.2 Thermally/electrically Tuned Optical Filters	174			
		5.5.3 Electrically Controlled PLCF-based Polarizer	175			
	~ .	5.5.4 Thermally Tunable Attenuator	175			
	5.6	Photonic Liquid Crystal Fiber Sensors for Sensing and Security	176			
	5.7	Conclusion	178 178			
		Acknowledgments	170			
		References	179			
6		Miniaturized Fiber Bragg Grating Sensor Systems for Potential Air Vehicle Structural Health Monitoring Applications				
	Air Vehicle Structural Health Monitoring Applications					
	Hong	Honglei Guo, Gaozhi Xiao, Nezih Mrad, and Jianping Yao				
	6.1	Introduction	183			
	6.2	Spectrum Fixed AWG-Based FBG Sensor System	186			

viii CONTENTS

		6.2.1 Operation Principle	186
		6.2.2 Applications	188
	6.3	Spectrum Tuning AWG-/EDG-Based FBG Sensor Systems	190
		6.3.1 Principle of Spectrum Tuning AWG	191
		6.3.2 Applications of Spectrum Tuning PLC	194
	6.4	Dual Function EDG-Based Interrogation Unit	215
	6.5	Conclusion	219
		Acknowledgments	220
		References	220
7		cal Coherence Tomography for Document Security	
	and I	Biometrics	225
	Shoud	de Chang, Youxin Mao, and Costel Flueraru	
	7.1	Introduction	225
	7.2	Principle of OCT	229
		7.2.1 Coherence Gate	229
		7.2.2 Time Domain and Fourier Domain OCT	230
		7.2.3 Full-Field OCT (FF-OCT)	232
	7.3	OCT Systems: Hardware and Software	233
		7.3.1 OCT Systems and Components	233
		7.3.2 Algorithms Used in OCT Signal/Image Processing	236
	7.4	Sensing Through Volume: Applications	242
		7.4.1 Security Data Storage and Retrieval	242
		7.4.2 Internal Biometrics for Fingerprint Recognition	244
	7.5	Summary and Conclusion	251
		References	252
8	Phot	onics-Assisted Instantaneous Frequency Measurement	259
	Shilo	ng Pan and Jianping Yao	
	8.1	Introduction	259
	8.2	Frequency Measurement Using an Optical Channelizer	261
		8.2.1 Optical Phased Array WDM	262
		8.2.2 Free-Space Diffraction Grating	264
		8.2.3 Phase-Shifted Chirped Fiber Bragg Grating Arrays	265
		8.2.4 Integrated Optical Bragg Grating Fabry-Perot Etalon	266
	8.3	Frequency Measurement Based on Power Monitoring	266
		8.3.1 Chromatic-Dispersion-Induced Microwave Power	
		Penalty	267
		8.3.2 Break the Lower Frequency Bound	273
		8.3.3 IFM Based on Photonic Microwave Filters with	
		Complementary Frequency Responses	277

			CONTENTS	1X
	8.3.4	First-Order Photonic Microwave Differentiator	r	280
	8.3.5	Optical Power Fading Using Optical Filters		284
8.4	Other	Methods for Frequency Measurement		287
	8.4.1	Fabry-Perot Scanning Receiver		287
	8.4.2	Photonic Hilbert Transform		287
	8.4.3	Monolithically Integrated EDG		289
	8.4.4	Incoherent Frequency-to-Time Mapping		290
8.5	Challe	nges and Future Prospects		291
8.6	Concl	ision		292
	Refere	nces		292

Index 297