Contents

Preface Glossary of Symbols			xi	
			xiii	
1	Intro	ntroduction		
	1.1	Network-Based Distributed Control System		1
	1.2	Graph Theory and Interconnecti	on Topology	4
		1.2.1 Basic Definitions		4
		1.2.2 Graph Operations		7
		1.2.3 Algebraic Graph Theory		10
	1.3	Distributed Control Systems		16
		1.3.1 End-to-End Congestion	Control Systems	16
		1.3.2 Consensus-Based Forma	tion Control	22
	1.4	Notes and References		25
		1.4.1 Graph Theory and Distri	buted Control Systems	25
		1.4.2 Delay in Control and Co	ntrol by Delay	26
	Refe	rences		26
2	Symmetry, Stability and Scalability			31
	2.1	System Model		31
		•	Distributed Control Systems	31
		2.1.2 Bipartite Distributed Con	ntrol Systems	34
	2.2			36
		2.2.1 Symmetric Systems		36
		2.2.2 Symmetry of Bipartite S	ystems	38
	2.3	Stability of Multivariable System		39
		2.3.1 Poles and Stability		39
		2.3.2 Zeros and Pole-Zero Car	ncelation	41
	2.4	Frequency-Domain Criteria of Stability		43
		2.4.1 Loop Transformation an	d Multiplier	44
		2.4.2 Multivariable Nyquist S	ability Criterion	45
		2.4.3 Spectral Radius Theorer	n and Small-Gain Theorem	50
		2.4.4 Positive Realness Theor		53
	2.5	Scalable Stability Criteria		53
		2.5.1 Estimation of Spectrum	of Complex Matrices	53
		-	a for Asymmetric Systems	56

viii CONTENTS

		2.5.3	Scalable Stability Criteria for Symmetric Systems	60	
		2.5.4	Robust Stability in Deformity of Symmetry	61	
	2.6	Notes	and References	64	
	Refe	rences		65	
3	Scala	ability :	in the Frequency Domain	67	
	3.1	How t	the Scalability Condition is Related with Frequency Responses	67	
	3.2	Clock	wise Property of Parameterized Curves	71	
	3.3	Scalab	pility of First-Order Systems	76	
			Continuous-Time System	76	
			Discrete-Time System	79	
	3.4		bility of Second-Order Systems	85	
			System of Type I	85	
			System of Type II	95	
	3.5		ency-Sweeping Condition	103	
			Stable Quasi-Polynomials	103	
			Frequency-Sweeping Test	105	
	3.6		and References	108	
	Refe	rences		109	
4	Congestion Control: Model and Algorithms				
	4.1	An In	troduction to Congestion Control	111	
		4.1.1	Congestion Collapse	112	
			Efficiency and Fairness	114	
		4.1.3	•	114	
	4.2		buted Congestion Control Algorithms	116	
		4.2.1	· · · · · · · · · · · · · · · · · · ·	116	
		4.2.2	•••	117	
		4.2.3		118	
		4.2.4		118	
	4.3		neral Model of Congestion Control Systems	119	
		4.3.1	Framework of End-to-End Congestion Control under Diverse		
			Round-Trip Delays	119	
		4.3.2		122	
		4.3.3	Frequency-Domain Symmetry of Congestion Control Systems	124	
	4.4		and References	126	
	Refe	erences		127	
5	Con	gestion	Control: Stability and Scalability	129	
	5.1		lity of the Primal Algorithm	129	
		5.1.1	Johari–Tan Conjecture	129	
		5.1.2	· · · · · · · · · · · · · · · · · · ·	131	
		5.1.3	Scalable Stability Criterion for Continuous-Time Systems	135	
	5.2		lity of REM	138	
		5.2.1	Scalable Stability Criteria	138	

CONTENTS

ix

		5.2.2	Dual Algorithm: the First-Order Limit Form of REM	145
		5.2.3	Design of Parameters of REM	146
	5.3	Stabili	ity of the Primal-Dual Algorithm	152
		5.3.1	Scalable Stability Criteria	152
		5.3.2	Proof of the Stability Criteria	161
	5.4	Time-	Delayed Feedback Control	163
		5.4.1	Time-Delayed State as a Reference	163
		5.4.2	TDFC for Stabilization of an Unknown Equilibrium	165
		5.4.3	Limitation of TDFC in Stabilization	166
	5.5	Stabili	ization of Congestion Control Systems by Time-Delayed	
		Feedb.	ack Control	170
		5.5.1	Introduction of TDFC into Distributed Congestion Control Systems	170
		5.5.2	Stabilizability under TDFC	171
		5.5.3	Design of TDFC with Commensurate Self-Delays	181
	5.6	Notes	and References	188
		5.6.1	Stability of Congestion Control with Propagation Delays	188
		5.6.2	Time-Delayed Feedback Control	189
	Refe	rences		190
6	Con	sensus	in Homogeneous Multi-Agent Systems	193
	6.1		luction to Consensus Problem	193
		6.1.1	Integrator Agent System	193
		6.1.2	Existence of Consensus Solution	194
		6.1.3	Consensus as a Stability Problem	194
		6.1.4	Discrete-Time Systems	195
		6.1.5	Consentability	195
	6.2	Secon	d-Order Agent System	196
		6.2.1	Consensus and Stability	196
		6.2.2	Consensus and Consentability Condition	199
		6.2.3	Periodic Consensus Solutions	203
		6.2.4	Simulation Study	204
	6.3	High-	Order Agent System	206
		6.3.1	System Model	206
		6.3.2	Consensus Condition	208
		6.3.3	Consentability	211
	6.4	Notes	and References	216
	Refe	erences		217
7	Con	sensus	in Heterogeneous Multi-Agent Systems	219
	7.1	Integr	rator Agent System with Diverse Input and Communication Delays	219
		7.1.1	Consensus in Discrete-Time Systems	220
		7.1.2	Consensus under Diverse Input Delays	221
		7.1.3	Consensus under Diverse Communication Delays and Input Delays	224
		7.1.4	Continuous-Time System	229
		7.1.5	Simulation Study	230

X CONTENTS

7.2	Double Integrator System with Diverse Input Delays and			
	Interconnection Uncertainties			
	7.2.1	Leader-Following Consensus Algorithm	233	
	7.2.2	Consensus Condition under Symmetric Coupling Weights	235	
	7.2.3	Robust Consensus under Asymmetric Perturbations	238	
	7.2.4	Simulation Study	240	
7.3	High-Order Consensus in High-Order Systems			
	7.3.1	System Model	243	
	7.3.2	Consensus Condition	245	
	7.3.3	Existence of High-Order Consensus Solutions	249	
	7.3.4	Constant Consensus	252	
	7.3.5	Consensus in Ideal Networks	254	
7.4	Integrator-Chain Systems with Diverse Communication Delays		255	
	7.4.1	Matching Condition for Self-Delay	255	
	7.4.2	Adaptive Adjustment of Self-Delay	255	
	7.4.3	Simulation Study	257	
7.5	'.5 Notes and References		265	
Refe	rences		266	

Index 269