CONTENTS

Pro	Preface	
1	UNDERSTANDING THE ISSUES	1
	1.1 A Brief History of Chemistry	1
	1.1.1 Fermentation: An Ancient Chemical Process	2
	1.1.2 The Advent of Modern Chemistry	2
	1.1.3 Chemistry in the 20th Century: The Growth of Modern Processes	2
	1.1.4 Risks of Chemicals in the Environment	ϵ
	1.1.5 Regulations: Controlling Chemical Processes	11
	1.2 Twenty-first Century Chemistry, aka Green Chemistry	13
	1.2.1 Green Chemistry and Pollution Prevention	13
	1.2.2 Sustainability	14
	1.3 Layout of the Book	18
	References	19
2	PRINCIPLES OF GREEN CHEMISTRY AND GREEN ENGINEERING	21
	2.1 Introduction	21
	2.2 Green Chemistry	23
	2.2.1 Definition	23
	2.2.2 Principles of Green Chemistry and Examples	24
	2.2.3 Presidential Green Chemistry Challenge Awards	3
	2.3 Green Engineering	34
	2.3.1 Definition	34
	2.3.2 Principles of Green Engineering	3.5
	2.4 Sustainability	38
	References	4
3	CHEMISTRY AS AN UNDERLYING FORCE IN ECOSYSTEM INTERACTIONS	43
	3.1 Nature and the Environment	44
	3.1.1 Air and the Atmosphere (Outdoor and Indoor Pollution)	4

iiv

viii CONTENTS

	3.1.2 Water (Water Pollutants, Issues Associated with	
	Nonpotable Drinking Water)	52
	3.1.3 Chemistry of the Land	53
	3.1.4 Energy	56
	3.2 Pollution Prevention (P2)	61
	3.3 Ecotoxicology	62
	3.4 Environmental Assessment Analysis	64
	3.5 What Can You Do to Make a Difference?	68
	References	70
4	MATTER: THE HEART OF GREEN CHEMISTRY	73
	4.1 Matter: Definition, Classification, and the Periodic Table	73
	4.1.1 Aluminum (Al)	75
	4.1.2 Mercury (Hg)	76
	4.1.3 Lead (Pb)	77
	4.2 Atomic Structure	77
	4.3 Three States of Matter	79
	4.4 Molecular and Ionic Compounds	81
	4.4.1 Molecular Compounds	82
	4.4.2 Ionic Compounds	94
	4.5 Chemical Reactions	100
	4.6 Mixtures, Acids, and Bases	102
	References	107
5	CHEMICAL REACTIONS	109
	5.1 Definition of Chemical Reactions and Balancing	
	of Chemical Equations	109
	5.2 Chemical Reactions and Quantities of Reactants	
	and Products	112
	5.3 Patterns of Chemical Reactions	115
	5.3.1 Combination, Synthesis, or Addition Reactions	115
	5.3.2 Decomposition Reactions	117
	5.3.3 Elimination Reactions	117
	5.3.4 Displacement Reactions	118
	5.3.5 Exchange or Substitution Reactions	124
	5.4 Effectiveness and Efficiency of Chemical Reactions:	135
	Yield Versus Atom Economy Reference	133
	Neithered	130

CONTENTS

6	KINE	TICS, CATALYSIS, AND REACTION ENGINEERING	139
	6.1 1	Basic Concept of Rate	139
	(5.1.1 Definition of Reaction Rate	139
	(5.1.2 Parallel Reactions	142
		6.1.3 Consecutive Reactions	146
		6.1.4 Chemical Equilibrium	150
		6.1.5 Effect of Concentration on Reaction Rate	153
		6.1.6 Effect of Temperature on Reaction Rate	159
	6.2	Role of Industrial and Biological Catalysts	162
		6.2.1 Definition of Catalysts	162
		6.2.2 Catalytic Kinetics	166
		6.2.3 Types of Catalysts and Impact on	
		Green Chemistry	170
		6.2.4 Biocatalysis	175
	6.3	Reaction Engineering	181
		6.3.1 Batch Reactor	181
		6.3.2 Continuous Stirred Tank Reactor	184
		6.3.3 Plug Flow Reactor (PFR)	188
		6.3.4 Multiphase Reactor Design	191
	6.4	Summary	194
	Refe	rences	194
7	THE	RMODYNAMICS, SEPARATIONS, AND EQUILIBRIUM	197
	7.1	Ideal Gases	197
	7.2	The First Law of Thermodynamics	201
		7.2.1 Closed System	203
		7.2.2 Open System	204
	7.3	Ideal Gas Calculations	205
	7.4	Entropy and the Second Law of Thermodynamics	210
	7.5	Real Gas Properties	214
	7.6	The Phase Diagram	217
	7.7	Equilibrium	221
		7.7.1 The Flash Calculation	227
	7.8	Solubility of a Gas in a Liquid	229
	7.9	Solubility of a Solid in a Liquid	230
	7.10	Summary	233
	Refe	rences	233

X CONTENTS

O	KENI	WABLE MATERIALS	235
	8.1	Introduction	235
	8.2	Renewable Feedstocks	236
		8.2.1 Role of Biomass and Components	236
		8.2.2 Production of Chemicals from Renewable Resources	242
	8.3	Applications of Renewable Materials	251
		8.3.1 The Case of Biodegradable Plastics	251
		8.3.2 The Case of Compostable Chemicals	254
		8.3.3 Production of Ethanol from Biomass	254
		8.3.4 The Case of Flex-Fuel Vehicles	256
		8.3.5 Production of Biodiesel	258
	8.4	Conclusion	261
	Refe	rences	261
9	CUR	RENT AND FUTURE STATE OF ENERGY PRODUCTION	
	AND	CONSUMPTION	263
	9.1	Introduction	263
	9.2	Basic Thermodynamic Functions and Applications	267
	9.3	Other Chemical Processes for Energy Transfer	272
		9.3.1 Microwave-Assisted Reactions	272
		9.3.2 Sonochemistry	273
		9.3.3 Electrochemistry	273
		9.3.4 Photochemistry and Photovoltaic Cells	274
	9.4	Renewable Sources of Energy in the 21st Century	
		and Beyond	275
		9.4.1 Solar Energy	275
		9.4.2 Wind Power	279
		9.4.3 Geothermal Solution	281
		9.4.4 Hydropower	283
		9.4.5 The Case of Hydrogen Technology	284
	0.5	9.4.6 Barriers to Development	285
	9.5	Concluding Thoughts About Sources of Energy and their Future	285
	Dafa	rences	286
	Neic	Tences	200
10		ECONOMICS OF GREEN AND SUSTAINABLE	207
		MISTRY David E. Meyer and Michael A. Gonzalez	287
	•	Introduction	287
		Chemical Manufacturing and Economic Theory	289
	10.2	Chomical manufacturing and Leonomic Theory	207

CONTENTS xi

		10.2.1 Plant (Microscale) Scale Economics	290
		10.2.2 Corporate Economics	290
		10.2.3 Macroeconomics	292
	10.3	Economic Impact of Green Chemistry	293
	10.4	Business Strategies Regarding Application	
		of Green Chemistry	306
	10.5	Incorporation of Green Chemistry in Process	
		Design for Sustainability	310
	10.6	Case Studies Demonstrating the Economic Benefits	217
	10.7	of Green Chemistry and Design	317
		Summary	321
	Refe	rences	322
11	GRE	EN CHEMISTRY AND TOXICOLOGY	325
	_	Pale E. Johnson and Grace L. Anderson	
	11.1	Introduction	325
	11.2	Fundamental Principles of Toxicology	326
		11.2.1 Basic Concepts	326
		11.2.2 Toxicokinetics	330
		11.2.3 Cellular Toxicity	333
	11.3	Identifying Chemicals of Concern	335
		11.3.1 Mode of Action Approaches	336
		11.3.2 Adverse Outcome Pathways	337
		11.3.3 Threshold of Toxicological Concern	338
		11.3.4 Chemistry-Linked-to-Toxicity: Structural	
		Alerts and Mechanistic Domains	338
	11.4	Toxicology Data	339
		11.4.1 Authoritative Sources of Information	339
		11.4.2 Data Gaps: The Challenge and the Opportunity	
		Arising from New Technologies	340
	11.5	Computational Toxicology and Green Chemistry	341
		11.5.1 Tools for Predictions and Modeling	341
		11.5.2 Interoperability of Models for Decision Making and the Case for Metadata	346
	11.6	Applications of Toxicology into Green Chemistry Initiatives	346
		11.6.1 REACH	346
		11.6.2 State of California Green Chemistry Initiatives	348
	11.7	Future Perspectives	349
		erences	350
	Inde	×	355