CONTENTS

PR	EFACE		XXIII
CO	NTRIBUTORS		XXV
PA	RT I INTROD	UCTION	1
1		s: Applications and Challenges	3
	Stefan R. Schmidi	t	
	1.1 History,	3	
		ns and Categories, 4	
	1.3 Patenting		
	1.4 Design a	nd Engineering, 6	
	1.4.1	Orientation of Fusion Proteins, 6	
		Linker Engineering, 7	
		Oligomerization of Fusion Proteins, 8	
		Immunogenicity, 9	
		Mutagenesis for Molecule Optimization, 9	
	1.5 Manufact		
		Upstream Process, 10	
		Downstream Process, 12	
		Formulation, 13	
		Process Economies, 13	
		Glycosylation, 14	
	-	ry Challenges, 15	
	•	tion and Market, 16 on and Future Perspective, 17	
	References,		
	Kererences,	10	
2	Analyzing and	Forecasting the Fusion Protein Market and Pipeline	25
_	Mark Belsey and	-	11
	2.1 Introduct	tion, 25	
	2.2 Market S	Sales Dynamics of the FP Market 25	

	5.5.2 Correlation of Clinical Immunogenicity of Fusion Proteins with <i>In Silico</i> Risk Estimates, 83	
	5.6 Preclinical and Clinical Immunogenicity Assessment Strategy, 85	
	5.6.1 Strategy and Recommendation, 85	
	5.7 Conclusions, 87	
	Acknowledgment, 87 References, 87	
	References, 67	
PAF	RT II THE TRIPLE T PARADIGM: TIME, TOXIN, TARGETING	91
IIA	TIME: FUSION PROTEIN STRATEGIES FOR HALF-LIFE EXTENSION	93
6	Fusion Proteins for Half-Life Extension	93
	Stefan R. Schmidt	
	6.1 Introduction, 93	
	6.2 Half-Life Extension Through Size and Recycling, 946.2.1 Direct Genetic Fusions, 94	
	6.2.1 Direct Genetic Fusions, 94 6.2.1.1 Albumin Fusions, 94	
	6.2.1.2 Fc Fusions, 97	
	6.2.1.3 Transferrin Fusions, 99	
	6.2.2 Half-Life Extension Through Attachment to Large Proteins, 99	
	6.3 Half-Life Extension Through Increase of Hydrodynamic Radius, 1006.3.1 Repetitive Peptide Fusions, 100	
	6.3.2 Glycosylated Peptides, 101	
	6.4 Aggregate Forming Peptide Fusions, 102	
	6.5 Other Concepts, 103	
	6.6 Conclusions and Future Perspective, 103	
	References, 104	
7	Monomeric Fc-Fusion Proteins	107
	Baisong Mei, Susan C. Low, Snejana Krassova, Robert T. Peters, Glenn F. Pierce,	
	and Jennifer A. Dumont	
	7.1 Introduction, 107	
	7.2 FcRn and Monomeric Fc-Fusion Proteins, 108	
	7.2.1 FcRn Expression and Function, 108	
	7.2.2 FcRn for the Delivery of Fc-Fusion Proteins, 108	
	7.3 Typical Applications, 109 7.3.1 Interferon Beta-Fc Monomer, 110	
	7.3.2 Interferon α-Fc Monomer, 110	
	7.3.3 Factor VIII-Fc Monomer, 111	
	7.3.4 Factor IX-Fc Monomer, 113	
	7.4 Alternative Applications, 114	
	7.4.1 Follicle Stimulating Hormone-Fc-Fusion Proteins, 1157.4.2 Cytokine-Fc-Fusion Proteins, 115	
	7.4.2 Cytokine-Pe-Pusion Proteins, 113 7.5 Expression and Purification of Monomeric Fe-Fusion Proteins, 116	
	7.6 Conclusions and Future Perspectives, 118	
	References, 118	
8	Peptide-Fc Fusion Therapeutics: Applications and Challenges Chichi Huang and Ronald V. Swanson	123
	8.1 Introduction, 123	
	· · · · · · · · · · · · · · · · · ·	

8.2	Peptide	Drugs, 124
	8.2.1	The Limitations of Native Endogenous Peptides in Drug
		Development, 124
	8.2.2	Chemical Modification of Peptides to Reduce Proteolytic
		Degradation, 124
	8.2.3	Constraining Peptides to be More Resistant to Protease
		Cleavage, 125
	8.2.4	Peptide Therapeutics Play an Important Role in Drug
		Development, 125
	8.2.5	Most Peptide Drugs Act as Receptor Agonists, 125
8.3		ogies Used for Reducing In Vivo Clearance of
		eutic Peptides, 126
	8.3.1	PEGylation, 126
	8.3.2	Human Serum Albumin Fusions, 126
	8.3.3	Other Approaches, 127
8.4		on Proteins in Drug Development, 127
	8.4.1	The Structure of Fc-Fusion Proteins, 127
	8.4.2	Fc-Fusion Therapeutics, 127
		8.4.2.1 Enbrel®, 128
		8.4.2.2 Amevive [®] , 128 8.4.2.3 Orencia [®] , 129
		8.4.2.3 Orencia ⁽¹⁾ , 129
		8.4.2.4 Arcalyst [®] (Also Known as IL-1 Trap or Rilonacept), 129
		8.4.2.5 Other Fc-Fusion Protein Therapeutics, 131
8.5	~	-Fc-Fusion Therapeutics, 131
	8.5.1	Peptibody, 131
		8.5.1.1 NPlate ⁽¹⁾ (Romiplostim, AMG531), 131
		8.5.1.2 AMG 386 (2xCon4(C)), 131
		8.5.1.3 A-623 (AMG 623), 132
	0.5.0	8.5.1.4 Dulaglutide (LY2189265), 132
	8.5.2	Mimetibody TM Technology, 133
		8.5.2.1 CNTO 528/CNTO 530, 133
0.0	G :1	8.5.2.2 CNTO736, 133
8.6		erations and Challenges for Engineering Peptide-Fc-Fusion
	_	eutics, 133
	8.6.1	Improving Activity, 134
	8.6.2	Improving Stability, 134
		Improving Pharmacokinetic Profile, 135 Improving Solubility and Reducing Aggregation, 135
	8.6.4 8.6.5	
	8.6.6	Reducing Heterogeneity, 135 Isotype Selection, 137
	8.6.7	Tailoring Fc-Effector Functions to Fit Individual Needs, 137
	8.6.8	Reducing Immunogenicity, 138
Q 7		sions, 138
		gment, 138
	ferences,	
ICC.	iciciicos,	150
tece	ptor-Fc	and Ligand Traps as High-Affinity Biological Blockers:

R **Development and Clinical Applications**

143

Aris N. Economides and Neil Stahl

- 9.1 Introduction, 143
- 9.2 Etanercept as a Prototypical Receptor-Fc-Based Cytokine Blocker, 144
- 9.3 Heteromeric Traps for Ligands Utilizing Multicomponent Receptor Systems with Shared Subunits, 144

11.1 Introduction, 179

	9.3.1 9.3.2	Proof-of-Concept for High-Affinity Traps for Ligands Utilizing Multicomponent Receptor Systems, 148 Turning Heterodimeric Soluble Receptor-Based Ligand Traps into Therapeutics, 150	
	9.4 Develor	oment and Clinical Application of an Interleukin 1 Trap: Rilonacept,	151
	-	oment and Clinical Application of a VEGF Trap, 151	131
	-	p Or Not To Trap?" Advantages and Disadvantages of	
		or-Fc Fusions and Traps Versus Antibodies, 152	
	9.6.1	Multiple Ligand Binding, 152	
	9.6.2	Signaling of Receptor-Fc Fusions, 154	
	9.6.3	Immunogenicity, 155	
	9.7 Conclus		
	Acknowled		
	References,		
10	Recombinant	Albumin Fusion Proteins	163
	Thomas Weime	r, Hubert J. Metzner, and Stefan Schulte	
		-	
	10.1 Concep		
		logical Aspects, 164	
		Applications and Indications, 164	
	10.3.1	Albumin Fusion Proteins in Late-Stage Development, 167 10.3.1.1 Interferon-α, 167	
		10.3.1.2 Glucagon-Like Peptide-1, 167 10.3.1.3 Granulocyte Colony-Stimulating Factor, 168	
	10 2 2		
	10.3.2	Albumin Fusion Proteins in Early-Stage Development, 168	
		10.3.2.1 Interleukin-2, 168 10.3.2.2 Insulin, 168	
		10.3.2.3 Growth Hormone, 169	
		10.3.2.4 Butyrylcholinesterase and Cocaine Hydrolase, 169	
		10.3.2.5 B-Type Natriuretic Peptide, 169 10.3.2.6 Erythropoietin, 170	
		10.3.2.7 Barbourin, 170	
		10.3.2.8 Hirudin, 170	
		10.3.2.9 Factor VII, 170	
		10.3.2.10 Factor IX, 171	
		10.3.2.11 Infestin-4, 171	
		10.3,2.12 Thioredoxin, 172	
		10.3.2.13 Thymosin-α1, 172	
		10.3.2.14 Antibody Fragments, 172	
	10.4 Success	ses and Failures in Preclinical and Clinical Research, 172	
	10.4.1	Interferon-α, 172	
	10.4.2	FVII and FIX, 173	
	10.5 Challer		
		Perspectives, 174	
	10.7 Conclu	•	
	Acknowledg		
	References,		
11	Albumin-Bin	ding Fusion Proteins in the Development of Novel	
		Therapeutics	179
	Adam Walker,	Gráinne Dunlevy, and Peter Topley	

11.2 Clinically Validated Half-Life Extension Technologies—An Overview, 180

12.5 12.6 Refe Half- Fuad 1	12.3.6 Applica Future I Concluerences, Life Ext Fares Introdu	ations and Indications, 196 Perspectives, 197 sion, 198
12.5 12.6 Refe Half -	12.3.4 12.3.5 12.3.6 Applica Future I Concluderences, Life Ext	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196 Perspectives, 197 sion, 198 198 tension Through O-Glycosylation 201
12.5 12.6 Refe	12.3.4 12.3.5 12.3.6 Applica Future I Concluerences,	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196 Perspectives, 197 sion, 198 198
12.5 12.6 Refe	12.3.4 12.3.5 12.3.6 Applica Future I Conclu- grences,	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196 Perspectives, 197 sion, 198 198
12.5 12.6	12.3.4 12.3.5 12.3.6 Applica Future I	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196 Perspectives, 197 sion, 198
12.5	12.3.4 12.3.5 12.3.6 Applica Future	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196 Perspectives, 197
	12.3.4 12.3.5 12.3.6 Applica	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196 ations and Indications, 196
12.4	12.3.4 12.3.5 12.3.6	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195 Summary of <i>In Vitro</i> Studies of SHG2210, 196
	12.3.4 12.3.5	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195 Antigenic Modulation Studies, 195
	12.3.4	Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling Studies in Cells, 195
		Internalization Studies in Cells, 194 SHG2210 and SHG2210: Anti-AChR Antibody Complex Recycling
	12.3.3	
	12.3.3	SHG2210: Anti-AchR Antibody Complex Binding and
		51102210 Ann-Acin Annous Dinning Studies, 199
		SHG2210 Binding and Internalization Studies in Cells, 193 SHG2210 Anti-AchR Antibody Binding Studies, 193
12.3		erization of SHG2210, 193 SHG2210 Rinding and Internalization Studies in Cells 193
		Protein SHG2210 Design, 192
		Overview, 191
Dennis	s Keefe, N	Aichael Heartlein, and Serene Josiah
		n as a Model 191
		Tusion Protein Therapies: Acetylcholine Receptor-Transferrin
11010	,	
	rences,	
11.6		sions, 188
		Serum Albumin Binding Small Molecules, 187 Hydrophilic Polymers, 187
		Serum Albumin Binding Peptides, 187
		oglobulin Variable Domains, 187
11.5		Half-Life Extension Technologies—Alternative Approaches to Single
	Variable	e Domains, 186
		on Technologies Based on Single Immunoglobulin
11.4		dies in the Development of Alternative Half-Life
	1133	Proteins, 184 In Vivo Efficacy of HSA and AlbudAb Fusion Proteins, 185
	11.3.2	Pharmacokinetics of HSA and AlbudAb Fusion
		Proteins, 182
	11.3.1	In Vitro Potency of HSA and AlbudAb Fusion
		Comparison of HSA and AlbudAb Fusion Technologies, 182
11.3	Interfere	on-α Fused to Human Serum Albumin or AlbudAb—A
	11.2.3	of Novel Half-Life Extension Technologies, 181
	11.2.2	
		PEGylation, 180 Serum Albumin Fusion, 180
		PEGVIATION IXU

12

13.3.3.3 Erythropoietin (EPO), 205 13.3.3.4 Human Growth Hormone (GH), 206 13.4 Conclusions, 207 References, 207	
ELP-Fusion Technology for Biopharmaceuticals Doreen M. Floss, Udo Conrad. Stefan Rose-John, and Jürgen Scheller	211
14.1 Introduction, 211 14.2 ELP-based Protein Purification, 212 14.3 ELPylated Proteins in Medicine and Nanobiotechnology, 215 14.4 Molecular Pharming: a New Application for ELPylation, 217 14.5 Challenges and Future Perspectives, 221 14.6 Conclusion, 222 References, 222	
Ligand-Receptor Fusion Dimers Sarbendra L. Pradhananga, Ian R. Wilkinson, Eric Ferrandis, Peter J. Artymiuk, Jon R. Sayers, and Richard J. Ross	227
 15.1 Introduction, 227 15.2 The GHLR-Fusions, 228 15.3 Expression and Purification, 229 15.4 Analysis of the LR-Fusions, 229 15.4.1 Characterization, 229 15.4.2 Biological Activity, 230 15.4.3 Pharmacokinetics, 230 15.4.4 Pharmacodynamics, 232 15.4.5 Immunogenicity, 233 15.4.6 Toxicology, 234 15.5 LR-Fusions: The Next Generation in Hormone Treatment, 234 15.6 Conclusion, 234 References, 234 	
Development of Latent Cytokine Fusion Proteins Lisa Mullen, Gill Adams, Rewas Fatah, David Gould, Anne Rigby, Michelle Sclanders, Apostolos Koutsokeras, Gayatri Mittal, Sandrine Vessillier, and Yuti Chernajovsky	237
 16.1 Introduction, 237 16.2 Description of Concept, 238 16.3 Limitations of the Latent Cytokine Technology, 240 16.4 Generation of Latent Cytokines, 242 16.4.1 Molecular Design, 242 16.4.2 Expression of LAP-Fusion Proteins, 243 16.4.3 Purification of LAP-Fusion Proteins, 243 16.5 Applications and Potential Clinical Indications, 244 16.5.1 Multiple Sclerosis, 244 16.5.1.2 Interferon β, 244 16.5.1.3 Erythropoietin, 245 16.5.1.4 Transforming Growth Factor-β, 245 16.5.2.1 Interferon β, 245 16.5.2.2 Interfeukine 10, 246 16.5.2.3 Interleukine 4, 246 	
	13.3.3.4 Human Growth Hormone (GH), 206 13.4 Conclusions, 207 References, 207 ELP-Fusion Technology for Biopharmaceuticals Doreen M. Floss, Udo Conrad, Stefan Rose-John, and Jürgen Scheller 14.1 Introduction, 211 14.2 ELP-based Protein Purification, 212 14.3 ELPylated Proteins in Medicine and Nanobiotechnology, 215 14.4 Molecular Pharming: a New Application for ELPylation, 217 14.5 Challenges and Future Perspectives, 221 14.6 Conclusion, 222 References, 222 Ligand-Receptor Fusion Dimers Sarbendra L. Fradhamanga, Ian R. Wilkinson, Eric Ferrandis, Peter J. Artymiuk, Jon R. Sayers, and Richard J. Ross 15.1 Introduction, 227 15.2 The GHLR-Fusions, 228 15.3 Expression and Purification, 229 15.4.1 Characterization, 229 15.4.2 Biological Activity, 230 15.4.3 Pharmacokinetics, 230 15.4.4 Pharmacodynamics, 232 15.4.5 Immunogenicity, 233 15.4.6 Toxicology, 234 15.5 LR-Fusions: The Next Generation in Hormone Treatment, 234 15.5 LR-Fusions: The Next Generation in Hormone Treatment, 234 References, 234 Development of Latent Cytokine Fusion Proteins Lisa Mullen, Gill Adams, Rewas Fatah, David Gould, Anne Rigby, Michelle Sclanders, Apostolos Koutsokeras, Gayatri Mittal, Sandrine Vessillier, and Yuti Chernajovsky 16.1 Introduction, 237 16.2 Description of Concept, 238 16.3 Limitations of the Latent Cytokine Technology, 240 16.4 Generation of Latent Cytokine, 242 16.4.1 Molecular Design, 242 16.4.2 Expression of LAP-Fusion Proteins, 243 16.5.1 Juntiple Sclerosis, 244 16.5.1.1 Interferon β, 244 16.5.1.1 Interferon β, 244 16.5.1.2 Interleukin 10, 245 16.5.1.3 Erythropoietin, 245 16.5.1.4 Transforming Growth Factor-β, 245 16.5.2.1 Interferon β, 245

	Iternatives/Variants of Approach, 246 hallenges (Production and Development), 247	
	onclusions and Future Perspectives, 248	
	wledgments, 249	
	nces, 249	
Refere		
TOXI	N: CYTOTOXIC FUSION PROTEINS	253
	Proteins with Toxic Activity	253
Stefan R.	Schmidt	
17.1 Ir	troduction, 253	
	oxins, 254	
	7.2.1 Microbial Toxins, 254	
1	7.2.2 Plant Toxins, 257	
17.3 In	nmunocytokines, 258	
1	7.3.1 Interleukin 2 Fusion Proteins, 258	
1	7.3.2 GM-CSF Fusion Proteins, 258	
1	7.3.3 Other Leukocyte Attracting Cytokines and Chemokines, 258	3
17.4 H	uman Enzymes, 259	
	7.4.1 Kinases, 259	
	7.4.2 RNAses, 259	
	7.4.3 Proteases, 260	
	7.4.4 Antibody-Directed Enzyme Prodrug Therapy, 260	
	poptosis Induction, 261	
	7.5.1 TNF Fusion Proteins, 261	
	7.5.2 FasL Fusion Proteins, 262	
	7.5.3 TRAIL Fusion Proteins, 262	
	7.5.4 Intrinsic Apoptosis Inducing Fusion Proteins, 263	
	c-Based Toxicity, 263 7.6.1 Antibody-Derived Cellular Cytotoxicity (ADCC), 263	
	7.6.1 Antibody-Dependent Cell-Mediated Phagocytosis (ADCP),	264
	7.6.3 Complement-Dependent Cytotoxicity (CDC), 264	204
	7.6.4 Complement-Dependent Cytotoxicity (CDC)	C). 264
	eptide-Based Toxicity, 264	-), - 0.
	Conclusions and Future Perspectives, 265	
	ences, 265	
Classic	Immunotoxins with Plant or Microbial Toxins	271
Jung He	e Woo and Arthur Frankel	
18.1 I	ntroduction, 271	
	Oxins Used in Immunotoxin Preparation, 272	
1	8.2.1 Diptheria Toxin, 272	
1	8.2.2 Pseudomonas Exotoxin, 272	
1	8.2.3 Ricin, 274	
1	8.2.4 Gelonin and Saporin, 274	
18.3 I	mmunotoxin Design and Synthesis, 274	
	Clinical Update of Immunotoxin Trials, 278	
	Challenges and Perspective of Classic Immunotoxins, 284	
	8.5.1 Adverse Events, 284	
	8.5.2 Immunogenicity, 285	
	Conclusions, 286	
Keter	ences, 286	

IIB

17

19	Targeted and Untargeted Fusion Proteins: Current Approaches to Cancer Immunotherapy	295
	Leslie A. Khawli, Peisheng Hu, and Alan L. Epstein	
	 Leslie A. Khawli, Peisheng Hu, and Alan L. Epstein 19.1 Introduction, 295 19.2 Immunotherapeutic Strategy for Cancer: Fusion Proteins, 296 19.3 Immunotherapeutic Applications of Antibody-Targeted and Untargeted Fc Fusion Proteins, 297 19.3.1 Cytokine Fusion Proteins, 298 19.3.2 Chemokine Fusion Proteins, 299 19.3.3 Co-Stimulatory Fusion Proteins, 300 19.3.3.1 B7.1 Fusion Proteins, 300 19.3.3.2 CD137L Fusion Proteins, 301 19.3.3.3 GITRL Fusion Proteins, 301 19.3.3.4 OX40L Fusion Proteins, 302 19.3.5 Vascular Targeting Fusion Proteins, 304 19.4 Combination Fusion Proteins Therapy, 305 19.4.1 Cytokine Fusion Protein Combinations, 305 19.4.2 Chemokine and Cytokine Synergy, 306 19.4.3 Co-Stimulatory Fusion Protein Combinations, 306 19.5 Mechanism of Action: Immunoregulatory T-Cell (Treg) Depletion and Fusion Protein Combination Therapy, 306 19.5.1 LEC Fusion Proteins in Combination with Treg Depletion, 307 19.5.2 CD137L and GITRL Fusion Proteins in Combination with Treg Depletion, 308 19.6 Future Directions, 309 19.7 Conclusion, 309 	
	Acknowledgments, 310	
	References, 310	
20	Development of Experimental Targeted Toxin Therapies for Malignant Glioma Nikolai G. Rainov and Volkmar Heidecke	315
	 20.1 Introduction, 315 20.2 Targeted Toxins—General Considerations, 316 20.3 Delivery Mode and Pharmacokinetics of Targeted Toxins in the Brain, 316 20.4 Preclinical and Clinical Studies with Targeted Toxins, 318 20.4.1 IL4-PE (NBI-3001), 318 20.4.2 TP-38, 319 20.4.3 IL13-PE38, 320 20.4.4 TransMID-107 (Tf-CRM107), 322 20.5 Conclusions and Future Developments of Targeted Toxins, 324 Disclosure, 325 References, 325 	
21	Immunokinases	329
	Stefan Barth, Stefan Gattenlöhner, and Mehmet Kemal Tur	
	 21.1 Introduction, 329 21.2 Protein Kinases, Apoptosis, and Cancer, 330 21.2.1 General Properties of Protein Kinases, 330 	

21.2.2 Death-Associated Protein Kinases (DAPKs), 330

21.4	Therape 21.3.1 21.3.2 21.3.3 Analysis 21.4.1 21.4.2		
		e Fusions	337
Wojcie	rch Ardelt		
22.1	Introduc	etion, 337	
		Immunotoxins, 337	
		Cytotoxic Activity of Ribonucleases, 337	
		Ribonuclease Targeting to Cancer Cells, 338	
22.2		oment of ImmunoRNase Fusion Proteins as Biopharmaceuticals,	339
		Immuno-Fusion Proteins of Eosinophil-Derived Endotoxin	
		or Angiogenin, 339	
	22.2.2	Immuno-Fusion Proteins of Bovine Seminal Plasma RNase	
		or Human Pancreatic RNase, 341	
	22.2.3	Immuno-Fusion Proteins of Onconase® or Rana Pipiens Liver	
		RNase, 342	
	22.2.4	Barnase Immuno-Fusion Proteins, 343	
22.3		of ImmunoRNase Design and Production, 344	
	-	· · · · · · · · · · · · · · · · · · ·	
		Interaction with Mammalian RNase Inhibitor, 344	
		Cleavable ImmunoRNases, 345	
		High-Level Production of ImmunoRNases, 345	
22.4		tives, 346	
		sions and Future Perspectives, 347	
	rences, 3		
ICIC	renees, .	ודע	
Antib	odv-Dir	ected Enzyme Prodrug Therapy (ADEPT)	355
	ler K. Sha		
		ction, 355	
23.2		mponents, 355	
	23.2.1	The Target, 355	
	23.2.2	The Antibody, 356	
	23.2.3	• •	
	23.2.4		
	23.2.5		
23.3	ADEPT	Systems with Carboxypeptidase G2 (CPG2), 357	
	23.3.1	System 1: Antibody–Enzyme Conjugates, 357	
		23.3.1.1 Preclinical Studies, 357	
		23.3.1.2 Removal of Enzyme Activity from Blood, 357	
		23.3.1.3 First in Man ADEPT Study, 358	
		23.3.1.4 Results of the First in Man ADEPT Study, 358	
		23.3.1.5 Conclusions from the First in Man ADEPT Study, 35	8
		•	

22

		The Second Clinical Study of ADEPT, 358 23.3.2.1 Conclusions from the Second Clinical Study	
		of ADEPT, 359	
		The Third Clinical Study of ADEPT, 359	
		23.3.3.1 Conclusions from the Third Clinical Study	
	22 4 5 1 5	of ADEPT, 359	
	23.4 Fusion P		
		The Fourth Clinical Study of ADEPT, 360	
	23.5 Immuno		
		ions and Future Outlook, 361	
	Acknowledge		
	References, 3	901	
24	Tumor-Target	ted Superantigens	365
	_	l, Göran Forsberg, Thore Nederman, Anette Sundstedt,	
		likael Tiensuu, and Mats Nilsson	
	24.1 Introduc	tion: Tumor-Targeted Superantigens—A Unique Concept of Ca	ncer
	Treatme	nt, 365	
		e and Production of Tumor-Targeted Superantigens, 366	
		Targeted Superantigens are Powerful Targeted Immune Activato	rs and
		or all Types of Malignancies, 367	
		ng the Therapeutic Window and Exposure by the Creation of a N	
		sion Protein with Minimal MHC Class II Affinity; Naptumomab	j
		atox, 370	
		Experience with TTS Therapeutic Fusion Proteins, 371	
		Anatumomab Mafenatox, 371	
		Naptumomab Estafenatox, 372	
		ing TTS with Cytostatic and Immunomodulating Anticancer	
	Drugs, 3 24.7 Conclus		
	References, 3		
	References, 1)	
110	TO A D. COLUMN	G FLOVAN PROJECTIVE A PROFESSIVE SPECIFIC	
IIC		G: FUSION PROTEINS ADDRESSING SPECIFIC	202
	CELLS, OR	GANS, AND TISSUES	383
25	Fusion Drotois	ng with a Targeting Function	383
43		ns with a Targeting Function	303
	Stefan R. Schmid	u	
	25.1 Introduc	etion, 383	
	25.2 Targetin	g Organs, 383	
		Brain, 383	
		Liver, 385	
		Lung, 386	
		Bone, 387	
		Thrombus Targeting, 387	
		lular Delivery, 388	
		Enzyme Replacement Therapy, 388	
	25.3.2	Cell Penetrating Peptides, 389	
	25.3.3	Antibody-Mediated Transduction, 390	
	25.3.4	Endosome Escape and Cytosol Translocation, 390	
	25.4 Oral De		
		sions and Future Perspectives, 392	
	References, 3	393	

?6	Cell-Penetrating Peptide Fusion Proteins Andrés Muñoz-Alarcón, Henrik Helmfors, Kristin Karlsson, and	397 Ülo Langel	
	 26.1 Introduction, 397 26.2 Typical Applications and Indications, 397 26.3 Technological Aspects, 399 26.3.1 Creating CPP-Fusion Proteins, 399 26.3.2 Recombinant Fusion Protein Expression Systems, 399 26.3.3 Disulfide Bond, 400 26.3.4 Biotin-Avidin Fusion Model, 401 26.3.5 Expressed Protein Ligation, 401 26.3.6 Purification, 401 26.3.7 Purification Tag, 401 26.3.8 Affinity Chromatography, 401 26.3.9 Solid Phase Peptide Synthesis and High Pe Chromatography, 402 26.4 Successes and Failures in Preclinical and Clinical R 26.4.1 Preclinical Research, 402 26.4.2 CPPs Used in Clinical Trials, 403 26.5 Alternatives/Variants of This Approach, 405 26.6 Conclusions and Future Perspectives, 405 Acknowledgments, 406 		
:7	References, 406 7 Cell-Specific Targeting of Fusion Proteins through Hep Jiajing Wang, Zhenzhong Ma, and Jeffrey A. Loeb	parin Binding 413	
	 27.1 Why Target Heparan-Sulfate Proteoglycans with Fu Proteins?, 413 27.2 Heparan Sulfate Structure and Biosynthesis Create and a Template for Targeting Specificity, 415 27.3 Tissue-Specific Expression of HSPGs and the Enzy That Modify Them, 416 27.4 Heparin-Binding Proteins and Growth Factors, 416 27.5 Viruses Target Cells Through Heparin Binding, 41° 27.6 Dissecting Heparin-Binding Protein Domains for Targeting, 418 27.7 Fusion Proteins Incorporating HBDs, 418 27.8 The Neuregulin 1 Growth Factor Has a Unique and Specific HBD, 419 27.9 Using Neuregulin's HBD to Generate a Targeted Nantagonist, 419 27.10 Tissue Targeting and Therapeutic Efficacy of a Heparatagonist Fusion Protein, 420 27.11 Conclusions and Future Perspectives, 423 References, 424 	Diversity mes 7 issue-Specific Highly euregulin	
28	28 Bone-Targeted Alkaline Phosphatase José Luis Millán	429	
	28.1 Detailed Description of the Concept, 42928.2 Technical Aspects, 43028.3 Applications and Indications, 432		

28.4 Preclinical and Clinical Research, 433

	28.6 Challer		
29	as a Scaffold	terferon-α to the Liver: Apolipoprotein A-I for Protein Delivery	441
	Jessica Fiorava	nti, Jesús Prieto, and Pedro Berraondo	
	29.1.1 29.1.2 29.1.3	d Description of the Concept, 441 Interferons, 441 Stabilization of IFN-α, 442 IFN-α Liver Targeting, 443 Apolipoprotein A-I as a Scaffold for Peptide and Protein Delivery, 444	
	29.1.5	Stabilization and Liver Targeting of IFN-α by Apolipoprotein A-I, 445	
	29.1.6	Unexpected Properties of the Fusion Protein of Interferon- α and Apolipoprotein A-I, 446	
	29.2 Techno	logical Aspects, 447	
		Applications and Indications, 447	
		tives and Variants of This Approach, 448	
		sions and Future Perspectives, 448	
	References	AAS	
	References,	448	
	References,	448	
PA.		OND THE TRIPLE T-PARADIGM	453
PA:	RT III BEYO		453 455
Ш	RT III BEYO A NOVEL C	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS	455
	RT III BEYO A NOVEL C Signal Conve	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS orter Proteins	
Ш	RT III BEYO A NOVEL C	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS orter Proteins	455
Ш	RT III BEYO A NOVEL Conversation of the Signal Conversation of the Mark L. Tykocon 30.1 Introduction of the Signal Program of the Si	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS erter Proteins inski action, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS orter Proteins inski oction, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS erter Proteins inski action, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS orter Proteins inski action, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457	455
Ш	Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expand Redired	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS Teter Proteins inski oction, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 ding Trans Signal Conversion Options: octing Signals, 459	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expano Redirec 30.5 From T	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS erter Proteins inski action, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Ing Trans Signal Conversion Options: cting Signals, 459 Grans to Cis Signal Conversion: Driving Auto-Signaling, 460	455
Ш	RT III BEYO NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expano Redirec 30.5 From T 30.6 Mecha	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS Teter Proteins inski action, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Iting Trans Signal Conversion Options: eting Signals, 459 Trans to Cis Signal Conversion: Driving Auto-Signaling, 460 mistic Dividends of Chimerization, 461	455
Ш	RT III BEYO A NOVEL Co Signal Convert Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expand Redirect 30.5 From T 30.6 Mecha 30.7 Targeti Convert	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS Teter Proteins Total Roots of Signal Conversion: Artificial Veto Cell Engineering Otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Iting Trans Signal Conversion Options: Citing Signals, 459 Trans to Cis Signal Conversion: Driving Auto-Signaling, 460 mistic Dividends of Chimerization, 461 ng Multiple Diseases with Individual Signal tters, 462	455
Ш	RT III BEYO A NOVEL Co Signal Convert Mark L. Tykoc 30.1 Introdut 30.2 Historic and Pro 30.2.1 30.2.2 30.3 Trans St 30.4 Expand Redirect 30.5 From T 30.6 Mechat 30.7 Targetit Convert 30.8 Structure	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS Teter Proteins Total Roots of Signal Conversion: Artificial Veto Cell Engineering Otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Iting Trans Signal Conversion Options: Otting Signals, 459 Trans to Cis Signal Conversion: Driving Auto-Signaling, 460 Total Signal Conversion, 461 Total Multiple Diseases with Individual Signal Teters, 462 Trans Constraints in SCP Design, 463	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expand Redirec 30.5 From T 30.6 Mecha 30.7 Targeti Conver 30.8 Structu 30.9 Coding	OND THE TRIPLE T-PARADIGM ONCEPTS, NOVEL SCAFFOLDS Teter Proteins Total Roots of Signal Conversion: Artificial Veto Cell Engineering Otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Iting Trans Signal Conversion Options: Oteing Signals, 459 Trans to Cis Signal Conversion: Driving Auto-Signaling, 460 Inistic Dividends of Chimerization, 461 Ing Multiple Diseases with Individual Signal Iters, 462 Trans Constraints in SCP Design, 463 SCP Functional Repertoires, 463	455
Ш	RT III BEYO NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historic and Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expand Redirec 30.5 From T 30.6 Mecha 30.7 Targeti Conveil 30.8 Structu 30.9 Coding 30.10 Expand	ONCEPTS, NOVEL SCAFFOLDS Perter Proteins Inski Institution of Signal Conversion: Artificial Veto Cell Engineering Stein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 Iting Trans Signal Conversion Options: Steing Signals, 459 Frans to Cis Signal Conversion: Driving Auto-Signaling, 460 Institution Dividends of Chimerization, 461 Ing Multiple Diseases with Individual Signal Inters, 462 Iral Constraints in SCP Design, 463 Is SCP Functional Repertoires, 463 Iting the Catalog of Inhibitory SCP, 464	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Historiand Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expano Redirect 30.5 From T 30.6 Mecha 30.7 Targeti Conver 30.8 Structu 30.9 Coding 30.10 Expano 30.11 Immun 30.11	ONCEPTS, NOVEL SCAFFOLDS Freter Proteins Finiski Finis	455
Ш	RT III BEYO A NOVEL Co Signal Conve Mark L. Tykoc 30.1 Introdu 30.2 Histori and Pro 30.2.1 30.2.2 30.3 Trans S 30.4 Expand Redired 30.5 From T 30.6 Mecha 30.7 Targeti Convei 30.8 Structu 30.9 Coding 30.10 Expand 30.11 Immur 30.12 Experi	ONCEPTS, NOVEL SCAFFOLDS Teter Proteins inski ction, 455 cal Roots of Signal Conversion: Artificial Veto Cell Engineering otein Painting, 455 Artificial Veto Cell Engineering, 456 Protein Painting, 457 Signal Converter Proteins, 458 ling Trans Signal Conversion Options: cting Signals, 459 Crans to Cis Signal Conversion: Driving Auto-Signaling, 460 mistic Dividends of Chimerization, 461 ng Multiple Diseases with Individual Signal ters, 462 tral Constraints in SCP Design, 463 g SCP Functional Repertoires, 463 ding the Catalog of Inhibitory SCP, 464 the Activating SCP, 466 mental Tools for Screening SCP Candidates, 467	455
Ш	RT III BEYO A NOVEL Co Signal Converting and Converting and Properties and Prop	ONCEPTS, NOVEL SCAFFOLDS Freter Proteins Finiski Finis	455

31 Soluble T-Cell Antigen Receptors 475 Peter R. Rhode 31.1 Soluble T-cell Antigen Receptor (STAR) Fusion Technology and Utilities, 475 31.1.1 Three Domains Single-Chain TCR (scTCR) Format and scTCR-Fusions, 476 31.1.2 Mutagenesis and Multimerization for Improved Target Recognition, 477 31.2 Expression and Purification of Recombinant Star Fusion Proteins, 477 31.3 Clinical and Research Product Applications. 478 31.3.1 Cancer Therapeutics, 478 31.3.2 Viral Therapeutics, 479 31.3.3 Diagnostic and Research Applications, 480 31.4 Preclinical Testing Using Star Fusion Proteins, 481 31.4.1 Preclinical Efficacy, Pharmacokinetic, and Toxicity Studies, 481 31.4.2 Antitumor Mechanism-of-Action Studies of ALT-801, 483 31.4.3 Preclinical Efficacy Studies of Anticancer p53 Specific scTCRIgG1 Fusion Proteins, 485 31.4.4 Evaluation of Combination p53-Specific STAR Fusion Protein and Chemotherapy Regimens in Tumor Efficacy Models, 486 31.5 Clinical Development of ALT-801, 487 31.5.1 Monotherapy Clinical Study with ALT-801, 487 31.5.2 ALT-801/Chemotherapy Phase II Studies, 487 31.6 Alternatives/Variants of This Approach, 488 31.6.1 Development of Novel TCR-Targeted IL-15 Superagonist Fusions, 488 31.6.2 Cell-Based Therapies, 489 31.7 Challenges, 489 31.8 Conclusions and Future Perspectives, 490 Acknowledgments, 490 References, 490 495 32 High-Affinity Monoclonal T-Cell Receptor (mTCR) Fusions Nikolai M. Lissin, Namir J. Hassan, and Bent K. Jakobsen 32.1 Introduction: The T Cell Receptor (TCR) as a Targeting Molecule, 495 32.2 Engineered High-Affinity Monoclonal TCRs (mTCR), 497 32.3 mTCR-Based Fusion Proteins for Therapeutic Applications, 500 32.4 Immune-Mobilizing Monoclonal TCRs Against Cancer (ImmTAC), 500 32.5 Conclusions and Future Perspectives, 503 Acknowledgments, 504 References, 504 507 33 Amediplase Stefano Evangelista and Stefano Manzini 33.1 Introduction, 507

33.2 Source, Physico-Chemical Properties and Formulation, 508

33.2.1 Production Cell Line, 508

33.2.2 Drug Substance, 508

33.2.3 Drug Product, 509

33.3 Preclinical Studies, 510

33.3.1 In Vitro Biological Properties, 510

33.3.1.1 Plasminogen Activator Activity, 510

33.3.1.2 In Vitro Thrombolytic Activity, 510

33.3.1.3 Fibrin Specificity, 510

		33.3.1.4	Inhibition by Plasma Protease Inhibitors, 510			
		33.3.1.5	Binding to Fibrin, 510			
		33.3.1.6	Clot Penetration, 510			
	33.3.		odynamics: In Vivo Studies, 511			
		33.3.2.1	Thrombolytic Activity in Rabbits, 511			
		33.3.2.2		511		
		33.3.2.3				
		33.3.2.4	In Vivo Thrombolytic Activity of Amediplase in Dogs,	511		
	33.3		okinetics, 511			
		33.3.3.1	Pharmacokinetics of Amediplase in Monkeys, 511			
			Pharmacokinetics of Amediplase in Rats, 511			
	22.2	33.3.3.3	The <i>In Vivo</i> Fate of Amediplase in Rats, 512			
	33.3		£3,			
		an Studies, 5				
	33.4		dy: A Phase I Single Ascending Dose Study, 512			
	33.4		dy: A Phase II, Multicenter, Open-Label, Dose-Finding,			
	22.4	Pilot Stu		4		
	33.4		dy: A Double-Blind, Randomized, Parallel Group Study			
	22 5 IE at		e the Efficacy and Safety of Two Doses of Amediplase,	514		
			arison with Other Thrombolytics, 517			
	33.6 Conclusions and Future Perspectives, 517 Acknowledgment, 517					
	Reference		1			
	Reference	75, <i>3</i> 17				
34	Breaking I	New Theran	eutic Grounds: Fusion Proteins of Darpins			
٠.	_	-	ly Binding Proteins	519		
	Hans Kaspa		, 2	:-		
	-					
		duction, 519				
			–Alternatives to Antibodies, 519			
			and Limitations of Antibodies, 519			
			Binding Proteins, 520			
			g Nonantibody Binding Proteins, 521			
	34.2.4 DARPins—Designed Ankyrin Repeat Proteins, 522					
		-	Concepts with Nonantibody Binding Proteins, 523			
	34.3		Fusion Protein Examples, 523 Proteins with Nonantibody Binding Proteins, 523			
	34.3	34.3.2.1				
		34.3.2.2				
		34.3.2.3	•	ding		
		54.5.2.5	Proteins, 525	ding		
		34.3.2.4		25		
	34.4 Scat		Proteins Beyond Antibody Possibilities, 525	23		
		edgments, 52	·			
	Reference					
		,				
IIII	B MULTI	FUNCTION	AL ANTIBODIES	529		
25	D	e D' '	Co Amatho di co	529		
35	35 Resurgence of Bispecific Antibodies					
	Patrick A. Baeuerle and Tobias Raum					
	35.1 AB	rief History o	of Bispecific Antibodies, 529			
	35.2 Asymmetric IgG-I ike Rispecific Antihodies 530					

	 35.3 Symmetric IgG-Like Bispecific Antibodies, 531 35.4 IgG-Like Bispecific Antibodies with Fused Antibody Fragments, 533 35.5 Bispecific Constructs Based on the Fcγ Fragment, 534 35.6 Bispecific Constructs Based on Fab Fragments, 535 35.7 Bispecific Constructs Based on Diabodies or Single-Chain Antibodies, 536 35.8 Bifunctional Fusions of Antibodies or Fragments with Other Proteins, 538 35.9 Bispecific Antibodies for Various Functions: How to Select the Right Format?, 539 References, 541 		
36	Troverse Francisco Control Con	545	
	Syd Johnson, Bhaswati Barat, Hua W. Li, Ralph F. Alderson, Paul A. Moore, and Ezio Bonvini		
	 36.1 Introduction, 545 36.2 DART Proteins, 546 36.3 Application of DART to Cross-Link Inhibitory and Activating Receptors, 36.4 Application of Bispecific Antibodies in Oncology, 547 36.4.1 CD16-Based DART Proteins, 547 36.4.2 CD3/TCR-Based DART Concept for Screening DART Candidate Targets and mAbs, 54 36.5 U-DART Concept for Applications in Autoimmune and Inflammatory Disease, 549 36.6.1 Inhibition of Basophil Degranulation, 553 36.7 Conclusions and Future Perspectives, 554 References, 554 		
37	Strand Exchange Engineered Domain (Seed): A Novel Platform Designed to Generate Mono and Multispecific Protein Therapeutics	557	
	Alec W. Gross, Jessica P. Dawson, Marco Muda, Christie Kelton, Sean D. McKenna, and Björn Hock	<i>331</i>	
	37.1 Introduction, 557 37.2 Technical Aspects, 558 37.2.1 Workflow, 558 37.2.2 Therapeutic Formats, 560 37.2.3 Biophysical Properties, 561 37.2.4 Biological Properties, 562 37.3 Potential Therapeutic Applications, 562 37.4 Future Perspectives, 566 37.5 Conclusions, 567 Acknowledgments, 567 References, 567		
38	CovX-Bodies Abbiiis Photo Olivion Louvent and Bodium Louve		
	Abhijit Bhat, Olivier Laurent, and Rodney Lappe 38.1 The CovX-Body Concept, 571 38.2 Technological Aspects, 571 38.2.1 Scaffold Antibody, 571 38.2.2 Linker Design, 575 38.2.3 Choice of Payload, 577 38.2.4 Manufacture, Process, Characterization, 578		

xxii CONTENTS

38.3 Applications of the CovX-Body Technology, 578 38.3.1 CVX-060, a Selective Angiopoietin-2 Targeting CovX-Body, 578 38.3.2 CVX-241, an Example of a Bispecific Antibody, 580 38.3.3 CVX-343, Fusion of a Small Protein with CVX-2000, 581 References, 581				
Maximilian Woisetschläger, Florian Rüker, Geert C. Mudde, Gordana Wozniak-Knopp,	83			
39.1 Introduction, 583 39.2 Immunoglobulin Fc as a Scaffold, 583 39.3 Design of Libraries Based on the Human IgG1 CH3 Domain, 584 39.4 TNF-α-Binding Fcab: Selection and Characterization of Fcab TNF353-2, 58 39.5 Conclusions and Future Perspectives, 588 Acknowledgments, 588 References, 589				
 Edmund A. Rossi, David M. Goldenberg, and Chien-Hsing Chang 40.1 Introduction, 591 40.2 DDD/AD Modules Based on PKA and AKAP, 592 40.3 Advantages and Disadvantages of the DNL Method, 592 40.3.1 Advantages of the DNL Method, 593 40.4 Fab-Based Modules, 593 40.5 IgG-AD2-Modules, 594 40.6 Hexavalent Antibodies, 595 40.7 More Antibody-Based-Modules and Multivalent Antibodies, 596 40.8 Nonantibody-Based DNL Modules, 597 40.9 IFN-α2b-DDD2 Module and Immunocytokines, 597 40.10 Variations on the DNL Theme, 598 40.10.1 Alternative Linker Modules, 598 40.10.2 Alternative Covalent Stabilization, 598 40.11 Conclusions and Future Perspective, 599 	es, 91			
	38.3.1 CVX-060, a Selective Angiopoietin-2 Targeting CovX-Body, 578 38.3.2 CVX-241, an Example of a Bispecific Antibody, 580 38.3.3 CVX-343, Fusion of a Small Protein with CVX-2000, 581 References, 581 Modular Antibody Engineering: Antigen Binding Immunoglobulin Fc CH3 Domains as Building Blocks for Bispecific Antibodies (mAb²) Maximilian Woisetschläger, Florian Rüker, Geert C. Mudde, Gordana Wozniak-Knopp, Anton Bauer, and Gottfried Himmler 39.1 Introduction, 583 39.2 Immunoglobulin Fc as a Scaffold, 583 39.3 Design of Libraries Based on the Human IgG1 CH3 Domain, 584 39.4 TNF-α-Binding Fcab: Selection and Characterization of Fcab TNF353-2, 58 39.5 Conclusions and Future Perspectives, 588 Acknowledgments, 588 References, 589 Designer Fusion Modules for Building Multifunctional, Multivalent Antibodie and Immunoconjugates: The Dock-and-Lock Method 59 Edmund A. Rossi, David M. Goldenberg, and Chien-Hsing Chang 40.1 Introduction, 591 40.2 DDD/AD Modules Based on PKA and AKAP, 592 40.3.1 Advantages and Disadvantages of the DNL Method, 592 40.3.2 Disadvantages of the DNL Method, 593 40.4 Fab-Based Modules, 593 40.5 IgG-AD2-Modules, 593 40.6 Hexavalent Antibodies, 595 40.7 More Antibody-Based-Modules and Multivalent Antibodies, 596 40.8 Nonantibody-Based DNL Modules, 597 40.10 Variations on the DNL Theme, 598 40.10.1 Alternative Linker Modules, 598 40.10.2 Alternative Covalent Stabilization, 598			

INDEX 603