Contents

rc	rewo	ora	XIX				
Pi	reface		xxiii				
1	Practical Experience with an Integrated Syndromic Surveillance System in the Medical, Veterinary, Nursing, and						
	Emergency Response Communities						
		iam Stanhope, Tigi Ward, R. Michael Ragain,					
		Simpson, and Alan Zelicoff					
	1.1						
		Zoonotic	1				
	1.2	Syndrome Reporting Information Systems	3				
		1.2.1 Examples	6				
		1.2.2 Some Successes with SYRIS	11				
		1.2.3 Actionable Information: The SYRIS Advantage	12				
	1.3	Conflict of Interest Disclosure	14				
2	Envi	ronmental Surveillance for Polioviruses in Israel:					
	Bioe	error, Bioterror, or just Mother Nature	17				
	Lest	er M. Shulman, Yossi Manor, Danit Sofer,					
	and	Ella Mendelson					
	2.1	The Silent Presence or Circulation of Polioviruses in					
		Poliomyelitis-Free Communities	17				
	2.2	Global Eradication of Poliomyelitis	18				
	2.3	The Need for Routine Surveillance	20				
	2.4	The Program of Environmental Surveillance for					
		Poliovirus in Israel	20				
	2.5	Polioviruses Isolated from Environmental Samples in					
		Israel	23				

	2.6	Molecular Analysis Yields Epidemiological Information	22
	2.7	The Contribution of Routine Surveillance toward	23
	2.7	Understanding One Potential Route for Reemergence	
		of Neurovirulent Polioviruses	27
	2.8	Monitoring Silent Poliovirus Infections:	27
	2.0	The Contribution of Sewage Surveillance	
		and Molecular Epidemiology	30
3	Filo	viruses: Deadly Pathogens and Potential Bioweapons	35
	Mici	hael Schümann and Elke Mühlberger	
	3.1	Emergence of Marburg and Ebola Viruses	35
	3.2	The Virus and the Disease	36
	3.3	Filovirus Biology	37
	3.4	Pathogenesis and Clinical Presentation	38
	3.5	The Bioweapon Potential of Filoviruses	40
		3.5.1 Dissemination and Transmission	41
		3.5.2 Mortality and Impact on Public Health	43
		3.5.3 Public Panic and Social Disruption	45
		3.5.4 Public Health Preparedness	46
		3.5.4.1 Vaccination	46
		3.5.4.2 Treatment	50
		3.5.4.3 Diagnostics	53
	3.6	Future Perspectives	55
4	Brid	ging Diagnostics Research, Development, and	
		nmercialization: Diagnostics for the Developing World	65
	Rose	anna W. Peeling	
	4.1	Lack of Access to Diagnostics as a Contributor to the	
		Burden of Infectious Diseases	65
	4.2	Role of Diagnostic Tests	66
	4.3	Diagnostic Landscape in the Developing World	67
	4.4	Lack of International and National Regulatory	
		Standards for Approval of Diagnostics	68
	4.5	The Ideal Diagnostic Tool	68
	4.6	Development of Diagnostic Tests	70
	4.7	Challenges in the Availability of Quality-Assured	
		Diagnostic Tests in the Developing World	70
	4.8	Opportunities for a Better Future	73

			Contents	ix			
		4.8.1 Technological Advances	73				
		4.8.2 More Funding and More Players	73				
		4.8.3 Increased Efforts at Capacity Building	75				
	4.9	Bridging Research, Product Development, and					
		Commercialization	75				
5	Oro	pouche Fever: An Overview of the Epidemiological and					
	Mol	ecular Aspects in the Brazilian Amazon Region	79				
	Pedi	ro F. C. Vasconcelos and Marcio R. T. Nunes					
	5.1	Oropouche Outbreaks	79				
	5.2	The Oropouche Virus	81				
	5.3	Geographic Distribution	83				
	5.4	Molecular Biology of the OROV	85				
6	Is A	vian Influenza Subtype H5N1 a Cause for Concern?					
	A Critical Analysis						
	Alar	P. Zelicoff					
	6.1	Specter of Panzootics	97				
	6.2	The Nature of Influenza A Predisposes It to Pandemic	s 98				
	6.3	A Brief History of the H5N1 Panzootic and Human					
		Cases	102				
	6.4	Review of Epidemiology of H5N1 in Humans	105				
		6.4.1 The Basis of the Concern for H5N1 as a					
		Pandemic Threat	106				
		6.4.2 Critique of the Pandemic Hypothesis	107				
	6.5	Are There Asymptomatic H5N1 Infections?	110				
	6.6	Do Humans Have Some Immunity to H5N1?	111				
	6.7	Experimental Data: Vaccination and Challenge					
		Experiments in Animals Using H5N1	114				
	6.8	Transmission of Reassortment Variants of H5N1	116				
	6.9	Was the 1918 Pandemic Different from Others?	117				
7	Diag	gnostics of Viral Respiratory Diseases	127				
		ar Amir, Guy Gubi, and Leslie Lobel					
	7.1	Viral Respiratory Diseases	127				
	7.2	Respiratory Viruses	128				
	7.3	Diagnostic Techniques	132				
		7.3.1 Immunoassays	135				
		7.3.2 Molecular Techniques	136				

		7.3.3	Multiplex PCR-Based Assays in Use Today	139
		7.3.4	Point-of-Care Tests	142
8	Reve	erse Ge	netics as a Tool for Detection of	
	Neg	ative-S	tranded RNA Viruses	149
	Pave	el Naun	nenko, Leslie Lobel, and Robert S. Marks	
	8.1	Dange	erous Viruses Easily Accessible	149
	8.2	Negat	ive-Stranded RNA Viruses	150
		8.2.1	Genome Structure	150
	8.3	Rever	se Genetics System Development	153
	8.4	Choos	sing the Promoter	155
	8.5	Appli	cations	156
	8.6		tion of Negative-Stranded RNA Viruses	157
	8.7		se Genetics–Based Detection	159
	8.8	Wher	e Do We Go from Here?	164
9	Diag	nostics	of Ebola Hemorrhagic Fever Virus	169
	Arie	l Sobar.	zo, Robert S. Marks, and Leslie Lobel	
	9.1	Ebola	Virus	169
	9.2	Etiolo	gy and Epidemiology	170
	9.3	Disea	se Transmission and Clinical Behavior	170
	9.4	Thera	ру	171
	9.5	The F	ear of Ebola	171
	9.6	Curre	nt Methods in Ebola Diagnostics	172
		9.6.1	Culture Virus Isolation	174
		9.6.2	Electron Microscopy	174
			Serological Assays	175
	9.7		ic Acid-Based Techniques	176
	9.8	_	eered Recombinant Proteins	177
	9.9		Frends in Ebola Diagnostics	179
			e Diagnostics	182
	9.11	The E	ffort Continues	186
10) Pa	thogen	Detection Using Spatially Focused Microwaves	
	an	d Meta	I-Enhanced Fluorescence	201
	Ka		ın and Chris D. Geddes	
	10	.1 Ult	rafast and Sensitive Detection of Anthrax with	
		Foo	cused Microwave and Metal-Enhanced	
			orescence	201
	10	.2 Me	tal-Enhanced Fluorescence	202

	10.3	Microwave-Accelerated Metal-Enhanced				
		Fluores	scence	206		
		10.3.1	Proof-of-Principle Demonstration of the			
			MAMEF Technique	207		
		10.3.2	Application of the MAMEF Technique to			
			Pathogen Detection Based on DNA			
			Hybridization Assays	210		
	10.4	Spatiall	ly Focused Microwaves and Metal-Enhanced			
		Fluores	scence for Pathogen and Virus Detection	213		
	10.5	Summa	ary and Future Outlook	220		
11	Lyssa	virus Sur	veillance and Diagnostics: Focus on Africa	227		
	Wand	la Marko	tter and Louis H. Nel			
	11.1	Introdu	ıction	227		
	11.2	The Eti	ological Agent	228		
	11.3	Lyssavi	iruses in Africa	231		
	11.4	Pathog	enesis of Lyssaviruses	233		
	11.5	Lyssavi	irus Diagnostics	235		
		11.5.1	Detection of Negri Bodies	236		
		11.5.2	Fluorescent Antibody Test	236		
		11.5.3	Enzyme-Linked Immunosorbent Assay	238		
		11.5.4	Direct Rapid Immunohistochemical Test	238		
		11.5.5	Rapid Lateral Flow			
			Immunochromatography	238		
		11.5.6	Detection of Lyssavirus RNA	239		
		11.5.7	Virus Isolation	240		
		11.5.8	Antibody Detection	241		
	11.6	Challer	nges for the Developing World	242		
12	Dete	ction of I	Human Pathogens under Basic Laboratory			
	Cond	itions by	DNA Hybridization Arrays	253		
	Romo	ın Wölfei	I			
13			n between Viral and Bacterial Respiratory			
			ng Chemiluminescence of Polymorphonuclear			
		ocytes		263		
			y, Mark Last, Leslie Lobel,			
		Robert S.				
	13.1	The In	nate Immune System and Participating Cells	263		

13.2	Phagocytosis as a First-Line Defense Mechanism					
	against	Pathogen	ıs	265		
	13.2.1	Respirate	ory Burst: Mechanisms,			
		Localizat	cion, and Techniques for Detection	266		
		13.2.1.1	Main mechanisms, products and			
			enzymes of the respiratory burst	266		
		13.2.1.2	Techniques used to measure			
			reactive oxygen species	267		
		13.2.1.3	Localization of the			
			luminol-dependent CL reaction	269		
		13.2.1.4	Stimulation of the respiratory			
			burst	271		
	13.2.2	Priming		272		
	13.2.3	Characte	rization of the Dynamic			
	Component Chemiluminescent Approach					
	for Assessment of Functional States of					
		Phagocy	tes	274		
	13.2.4	-	ents of Chemiluminescent			
		Kinetics		275		
13.3	Function		s of Phagocytes	277		
	13.3.1	-	: Assessment of Phagocytes'			
		Function		279		
		13.3.1.1	fMLP priming	280		
		13.3.1.2		280		
	13.3.2		al States of Phagocytes Associated			
			Ferent Clinical States	281		
	13.3.3		tic Function in Viral Infection	282		
	13.3.4		tic Function in Bacterial Infection	283		
13.4						
		ntiation		284		
13.5			etween Viral and Bacterial			
			ctions Using a Chemiluminescent			
	Approa			285		
	13.5.1	-	ion of an Experiment	285		
13.6			orithms and CL Information Can			
			ween Clinical Groups and Assess			
			s of Phagocytes	286		
13.7	Prospe	ects		290		

14	Phage Display for Viral Diagnostics							
	Danit	Atias, Le	slie Lobel, and Robert S. Marks					
	14.1	Phage I	Display for Advanced Diagnostics	299				
	14.2	Biology	of Phages	301				
	14.3	Filamer	ntous Phages	302				
		14.3.1	Structure of the Filamentous Phage Virion	303				
		14.3.2	Life Cycle of the Filamentous Phage	305				
		14.3.3	Filamentous Phage Display	307				
	14.4	T7 Phag	ge: Structure of the Virion	308				
			Life Cycle of T7	310				
		14.4.2	T7 Phage Display	311				
	14.5		les and Applications of Phage Display	313				
			Phage Display of Natural Peptides	314				
			Phage Display of Random Peptides	314				
		14.5.3						
			Domains	315				
		14.5.4	Multiple-Display Phages	316				
	14.6 Use of Phage-Displayed Epitopes for Viral							
Diagnostics			317					
		_	ELISA and Phage Display	318				
		14.6.2	Dot Blot Assay and Phage Display	318				
		14.6.3	PCR, Immuno-PCR, and Phage Display	319				
		14.6.4	Electrochemical Phage Immunosensors	320				
	14.7		cts for Use of Phage Display in Biosensors					
		and Bio	<u> </u>	321				
			•					
15	Nano	lithograp	ohy and Biochips' Role in Viral Detection	333				
	Inbal	Tsarfati-l	BarAd and Levi A. Gheber					
	15.1	The Ne	ed for Portable Biochips for Viral Detection	333				
	15.2	Arraye	d Biosensors: Biochips	334				
	15.3	The Ne	ed for Miniaturization	334				
	15.4	Nanolit	chography	335				
	15.5	SPM-Ba	ased Nanolithography Methods	336				
		15.5.1	Nanografting	337				
		15.5.2	Dip-Pen Nanolithography	337				
		15.5.3	Nano-Fountain Pen	338				
	15.6	Probler	ms Associated with Miniaturization	339				
	15.7	Conclus	Conclusions 3					

16	Optical Fiber Immunosensors and Genosensors for the					
	Detection of Viruses				343	
	Yael Liebes and Robert S. Marks					
	16.1	Issues i	in Biothrea	at Detection	343	
	16.2	Optical	Fibers as	Optical Transducers: Why Optical		
		Fibers	to Begin W	ith?	344	
		16.2.1	Optical Fi	ibers: Pros and Cons	345	
		16.2.2	The Basic	Physics behind Optical Fiber		
			Operation	n	346	
	-		16.2.2.1	Snell's law and TIR	346	
		16.2.3	Relevanc	e of Optical Fibers as a Waveguide		
			to Chemi	luminescence	350	
		16.2.4	Evanesce	nt Wave Principles Useful in		
				ence-Based Optical Fiber Sensors	351	
	16.3					
			cal Fibers		353	
		-		zation to Solid Supports	353	
		16.3.2	Immobili	zation via Functional		
			Group-Te	rminated Silane Reagents	356	
		16.3.3	Immobili	zation via Electrochemical		
			Procedur	es	356	
		16.3.4	Immobili	zation via an Avidin-Biotin Bridge	359	
	16.4	Signal Measurements: State-of-the-Art				
		Photodetectors 3				
		16.4.1	Evolution	n of Photodetector		
-			Instrume	entations	364	
	16.5	Fiber C)ptic Immi	unosensors Applications for Use in		
			nfections		365	
		16.5.1	Biosenso	rs under Research or		
			Develop	nent: Antibody Detection	365	
			16.5.1.1	Detection of anti-West Nile virus		
				IgG antibodies	365	
			16.5.1.2	Detection of viral antibodies		
				using an "electroptode"	368	
		16.5.2	Virus De		369	
			16.5.2.1	Newcastle disease virus	369	
			16.5.2.2	MS2 bacteriophage	370	
		16.5.3		n of Oligionucleotides	370	

			Contents xv
	16.6	Commercial Products	372
	16.7	Issues in Developing Fiber Optic-Based	~
		Immunosensors	375
	16.8	The Future Role of Optical Fiber Biosensors	376
17	Aptar	mers, a New Class of Binders, with Particular Focus o	n
	Diagn	ostics and Bioactivity in the Field of Virology	385
	Andre	eas Kage and Leslie Lobel	
	17.1	General Facts about Aptamers	385
	17.2	Selection Procedures	386
	17.3	Aptamers for Analytical Purposes (Detection and	
		Quantification)	387
		Polyvalent, Polyspecific Aptamer Constructs	387
		Aptamers for Therapeutic Purposes	388
	17.6	Aptamers in Virology	388
		17.6.1 General Facts about Aptamers in Virology	388
		17.6.2 Next Steps into the Future of Aptamers in	
		Virology	390
	17.7	AptaRes AG: MonoLex Aptamers	391
18		dotyped Viruses: A New Sero-Diagnostic Tool	395
	•	Michel Garcia	
		Brief Historical Review of Pseudotyped Viruses	395
	18.2	Present Lentiviral Production Technologies and	
		Their Limitations	396
		Pseudoparticles Characterization and Titration	399
	18.4	Applications to a Neutralization-Based	
		Sero-Diagnostic Assay	401
	18.5	Perspectives for the Use of Pseudoparticles in	
		Serology and Other Applications	402
19		eic Acid Isothermal Amplification Technologies and	
		-of-Care Diagnostics	409
	-	a M. Ferguson and Angelika Niemz	
	19.1	Isothermal Amplification Technologies	411
		19.1.1 Target Detection via RNA Transcription	411
		19.1.2 Target Detection via DNA Replication	414
		19.1.3 Target Detection via Strand Displacement	416

	19.2		T-NAAT-Compatible End-Point Detection Forms Suitable for Point-of-Care in					
			esource Settings	420				
20			and Marburg Viral Hemorrhagic Fever Uganda: The Need for Quick, Reliable					
	Diagn	ostic Tes	ets	427				
	Julius	Julian Lu	ıtwama					
	20.1	Introdu	iction	427				
	20.2	Outbre	ak Experience	429				
		20.2.1	The 2000–2001 Ebola Outbreaks: Gulu,					
			Masindi, and Mbarara Districts	429				
		20.2.2	The 2007 Marburg Outbreaks in the					
			Kamwemge District	433				
		20.2.3	The 2007–2008 Ebola Outbreak in the					
			Bundibugyo District	435				
	20.3	The Ch	allenges	438				
		20.3.1	Time Spent on Receiving Information and					
			Time Spent before a Response Is Made	438				
		20.3.2	Time Spent without Confirmation of an					
			Outbreak	439				
		20.3.3	Numbers of People Infected and Deaths	440				
			Numbers of Health Workers Infected and					
			Deaths	440				
		20.3.5	The Need for Quick Diagnostic Tests	441				
			20.3.5.1 The needed capacities	441				
			20.3.5.2 Infrastructural capacities	441				
		20.3.6	Trained Personnel	442				
			Availability of Funds	442				
		20.3.8						
			the Need for Simplification	442				
	20.4	Way Fo	orward for Uganda	444				
	_, _, _,	,						
21	Amp	erometri	c Immuno- and DNA Sensors for Rapid and					
			ification of Viruses	453				
	•		scu, Serge Cosnier, Vasile Magearu,					
		Robert S.						
		Introd		454				

				Contents	xvii
21.2	Theore	tical Asne	cts for Amperometric Enzyme		
21.2	Biosen	-	ets for imperometric Enzyme	461	
	5100011	00.0	tion to Basic Electrochemical	101	
	21.2.1	Principle		461	
	21.2.2	Voltamm		462	
		Amperor		463	
		-	netric Biosensors' Classes	465	
		-	First class of amperometric		
			biosensors	465	
		21.2.4.2	Second class of amperometric		
			biosensors	466	
		21.2.4.3	Third class of amperometric		
			biosensors	468	
21.3	Classifi	cation of A	Amperometric Biosensors	468	
		Immuno		468	
	21.3.2	DNA Sen	sors	470	
21.4	Viral Detection Using Amperometry			471	
		Variola V	- ·	471	
	21.4.2	Retroviri	dae Family	472	
		21.4.2.1	Bovine leukemia virus	472	
	21.4.3	The <i>Orth</i>	omyxoviridae Family	474	
		21.4.3.1	Parainfluenza and influenza A		
			viruses	474	
	21.4.4	The Flav	<i>iviridae</i> Family	475	
		21.4.4.1	Japanese encephalitis virus	475	
		21.4.4.2	West Nile virus	476	
		21.4.4.3	Hepatitis C virus	477	
		21.4.4.4	Bovine viral diarrhea virus	478	
	21.4.5	The Hepo	adnaviridae Family	479	
		21.4.5.1	Hepatitis B virus	479	
	21.4.6	The Buny	vaviridae Family	481	
		21.4.6.1	Hantaviruses	481	
	21.4.7	The Para	<i>myxoviridae</i> Family	482	
		21.4.7.1	Newcastle disease virus	482	
21.5	Future	Direction	s	483	
Index				493	